File: line_profiler.py

package info (click to toggle)
python-line-profiler 4.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 776 kB
  • sloc: python: 3,097; sh: 810; ansic: 65; makefile: 15
file content (550 lines) | stat: -rwxr-xr-x 18,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
#!/usr/bin/env python
"""
This module defines the core :class:`LineProfiler` class as well as methods to
inspect its output. This depends on the :py:mod:`line_profiler._line_profiler`
Cython backend.
"""
import pickle
import functools
import inspect
import linecache
import tempfile
import os
import sys
from argparse import ArgumentError, ArgumentParser

try:
    from ._line_profiler import LineProfiler as CLineProfiler
except ImportError as ex:
    raise ImportError(
        'The line_profiler._line_profiler c-extension is not importable. '
        f'Has it been compiled? Underlying error is ex={ex!r}'
    )

# NOTE: This needs to be in sync with ../kernprof.py and __init__.py
__version__ = '4.2.0'


def load_ipython_extension(ip):
    """ API for IPython to recognize this module as an IPython extension.
    """
    from .ipython_extension import LineProfilerMagics
    ip.register_magics(LineProfilerMagics)


def is_coroutine(f):
    return inspect.iscoroutinefunction(f)


CO_GENERATOR = 0x0020


def is_generator(f):
    """ Return True if a function is a generator.
    """
    isgen = (f.__code__.co_flags & CO_GENERATOR) != 0
    return isgen


def is_classmethod(f):
    return isinstance(f, classmethod)


class LineProfiler(CLineProfiler):
    """
    A profiler that records the execution times of individual lines.

    This provides the core line-profiler functionality.

    Example:
        >>> import line_profiler
        >>> profile = line_profiler.LineProfiler()
        >>> @profile
        >>> def func():
        >>>     x1 = list(range(10))
        >>>     x2 = list(range(100))
        >>>     x3 = list(range(1000))
        >>> func()
        >>> profile.print_stats()
    """

    def __call__(self, func):
        """ Decorate a function to start the profiler on function entry and stop
        it on function exit.
        """
        self.add_function(func)
        if is_classmethod(func):
            wrapper = self.wrap_classmethod(func)
        elif is_coroutine(func):
            wrapper = self.wrap_coroutine(func)
        elif is_generator(func):
            wrapper = self.wrap_generator(func)
        else:
            wrapper = self.wrap_function(func)
        return wrapper

    def wrap_classmethod(self, func):
        """
        Wrap a classmethod to profile it.
        """
        @functools.wraps(func)
        def wrapper(*args, **kwds):
            self.enable_by_count()
            try:
                result = func.__func__(func.__class__, *args, **kwds)
            finally:
                self.disable_by_count()
            return result
        return wrapper

    def wrap_coroutine(self, func):
        """
        Wrap a Python 3.5 coroutine to profile it.
        """

        @functools.wraps(func)
        async def wrapper(*args, **kwds):
            self.enable_by_count()
            try:
                result = await func(*args, **kwds)
            finally:
                self.disable_by_count()
            return result

        return wrapper

    def wrap_generator(self, func):
        """ Wrap a generator to profile it.
        """
        @functools.wraps(func)
        def wrapper(*args, **kwds):
            g = func(*args, **kwds)
            # The first iterate will not be a .send()
            self.enable_by_count()
            try:
                item = next(g)
            except StopIteration:
                return
            finally:
                self.disable_by_count()
            input_ = (yield item)
            # But any following one might be.
            while True:
                self.enable_by_count()
                try:
                    item = g.send(input_)
                except StopIteration:
                    return
                finally:
                    self.disable_by_count()
                input_ = (yield item)
        return wrapper

    def wrap_function(self, func):
        """ Wrap a function to profile it.
        """
        @functools.wraps(func)
        def wrapper(*args, **kwds):
            self.enable_by_count()
            try:
                result = func(*args, **kwds)
            finally:
                self.disable_by_count()
            return result
        return wrapper

    def dump_stats(self, filename):
        """ Dump a representation of the data to a file as a pickled LineStats
        object from `get_stats()`.
        """
        lstats = self.get_stats()
        with open(filename, 'wb') as f:
            pickle.dump(lstats, f, pickle.HIGHEST_PROTOCOL)

    def print_stats(self, stream=None, output_unit=None, stripzeros=False,
                    details=True, summarize=False, sort=False, rich=False):
        """ Show the gathered statistics.
        """
        lstats = self.get_stats()
        show_text(lstats.timings, lstats.unit, output_unit=output_unit,
                  stream=stream, stripzeros=stripzeros,
                  details=details, summarize=summarize, sort=sort, rich=rich)

    def run(self, cmd):
        """ Profile a single executable statment in the main namespace.
        """
        import __main__
        main_dict = __main__.__dict__
        return self.runctx(cmd, main_dict, main_dict)

    def runctx(self, cmd, globals, locals):
        """ Profile a single executable statement in the given namespaces.
        """
        self.enable_by_count()
        try:
            exec(cmd, globals, locals)
        finally:
            self.disable_by_count()
        return self

    def runcall(self, func, *args, **kw):
        """ Profile a single function call.
        """
        self.enable_by_count()
        try:
            return func(*args, **kw)
        finally:
            self.disable_by_count()

    def add_module(self, mod):
        """ Add all the functions in a module and its classes.
        """
        from inspect import isclass, isfunction

        nfuncsadded = 0
        for item in mod.__dict__.values():
            if isclass(item):
                for k, v in item.__dict__.items():
                    if isfunction(v):
                        self.add_function(v)
                        nfuncsadded += 1
            elif isfunction(item):
                self.add_function(item)
                nfuncsadded += 1

        return nfuncsadded


# This could be in the ipython_extension submodule,
# but it doesn't depend on the IPython module so it's easier to just let it stay here.
def is_ipython_kernel_cell(filename):
    """ Return True if a filename corresponds to a Jupyter Notebook cell
    """
    filename = os.path.normcase(filename)
    temp_dir = os.path.normcase(tempfile.gettempdir())
    return (
        filename.startswith('<ipython-input-') or
        filename.startswith(os.path.join(temp_dir, 'ipykernel_')) or
        filename.startswith(os.path.join(temp_dir, 'xpython_'))
    )


def show_func(filename, start_lineno, func_name, timings, unit,
              output_unit=None, stream=None, stripzeros=False, rich=False):
    """
    Show results for a single function.

    Args:
        filename (str):
            path to the profiled file

        start_lineno (int):
            first line number of profiled function

        func_name (str): name of profiled function

        timings (List[Tuple[int, int, float]]):
            measurements for each line (lineno, nhits, time).

        unit (float):
            The number of seconds used as the cython LineProfiler's unit.

        output_unit (float | None):
            Output unit (in seconds) in which the timing info is displayed.

        stream (io.TextIOBase | None):
            defaults to sys.stdout

        stripzeros (bool):
            if True, prints nothing if the function was not run

        rich (bool):
            if True, attempt to use rich highlighting.

    Example:
        >>> from line_profiler.line_profiler import show_func
        >>> import line_profiler
        >>> # Use a function in this file as an example
        >>> func = line_profiler.line_profiler.show_text
        >>> start_lineno = func.__code__.co_firstlineno
        >>> filename = func.__code__.co_filename
        >>> func_name = func.__name__
        >>> # Build fake timeings for each line in the example function
        >>> import inspect
        >>> num_lines = len(inspect.getsourcelines(func)[0])
        >>> line_numbers = list(range(start_lineno + 3, start_lineno + num_lines))
        >>> timings = [
        >>>     (lineno, idx * 1e13, idx * (2e10 ** (idx % 3)))
        >>>     for idx, lineno in enumerate(line_numbers, start=1)
        >>> ]
        >>> unit = 1.0
        >>> output_unit = 1.0
        >>> stream = None
        >>> stripzeros = False
        >>> rich = 1
        >>> show_func(filename, start_lineno, func_name, timings, unit,
        >>>           output_unit, stream, stripzeros, rich)
    """
    if stream is None:
        stream = sys.stdout

    total_hits = sum(t[1] for t in timings)
    total_time = sum(t[2] for t in timings)

    if stripzeros and total_hits == 0:
        return

    if rich:
        # References:
        # https://github.com/Textualize/rich/discussions/3076
        try:
            from rich.syntax import Syntax
            from rich.highlighter import ReprHighlighter
            from rich.text import Text
            from rich.console import Console
            from rich.table import Table
        except ImportError:
            rich = 0

    if output_unit is None:
        output_unit = unit
    scalar = unit / output_unit

    linenos = [t[0] for t in timings]

    stream.write('Total time: %g s\n' % (total_time * unit))
    if os.path.exists(filename) or is_ipython_kernel_cell(filename):
        stream.write(f'File: {filename}\n')
        stream.write(f'Function: {func_name} at line {start_lineno}\n')
        if os.path.exists(filename):
            # Clear the cache to ensure that we get up-to-date results.
            linecache.clearcache()
        all_lines = linecache.getlines(filename)
        sublines = inspect.getblock(all_lines[start_lineno - 1:])
    else:
        stream.write('\n')
        stream.write(f'Could not find file {filename}\n')
        stream.write('Are you sure you are running this program from the same directory\n')
        stream.write('that you ran the profiler from?\n')
        stream.write("Continuing without the function's contents.\n")
        # Fake empty lines so we can see the timings, if not the code.
        nlines = 1 if not linenos else max(linenos) - min(min(linenos), start_lineno) + 1
        sublines = [''] * nlines

    # Define minimum column sizes so text fits and usually looks consistent
    default_column_sizes = {
        'line': 6,
        'hits': 9,
        'time': 12,
        'perhit': 8,
        'percent': 8,
    }

    display = {}

    # Loop over each line to determine better column formatting.
    # Fallback to scientific notation if columns are larger than a threshold.
    for lineno, nhits, time in timings:
        if total_time == 0:  # Happens rarely on empty function
            percent = ''
        else:
            percent = '%5.1f' % (100 * time / total_time)

        time_disp = '%5.1f' % (time * scalar)
        if len(time_disp) > default_column_sizes['time']:
            time_disp = '%5.1g' % (time * scalar)

        perhit_disp = '%5.1f' % (float(time) * scalar / nhits)
        if len(perhit_disp) > default_column_sizes['perhit']:
            perhit_disp = '%5.1g' % (float(time) * scalar / nhits)

        nhits_disp = "%d" % nhits
        if len(nhits_disp) > default_column_sizes['hits']:
            nhits_disp = '%g' % nhits

        display[lineno] = (nhits_disp, time_disp, perhit_disp, percent)

    # Expand column sizes if the numbers are large.
    column_sizes = default_column_sizes.copy()
    if len(display):
        max_hitlen = max(len(t[0]) for t in display.values())
        max_timelen = max(len(t[1]) for t in display.values())
        max_perhitlen = max(len(t[2]) for t in display.values())
        column_sizes['hits'] = max(column_sizes['hits'], max_hitlen)
        column_sizes['time'] = max(column_sizes['time'], max_timelen)
        column_sizes['perhit'] = max(column_sizes['perhit'], max_perhitlen)

    col_order = ['line', 'hits', 'time', 'perhit', 'percent']
    lhs_template = ' '.join(['%' + str(column_sizes[k]) + 's' for k in col_order])
    template = lhs_template + '  %-s'

    linenos = range(start_lineno, start_lineno + len(sublines))
    empty = ('', '', '', '')
    header = ('Line #', 'Hits', 'Time', 'Per Hit', '% Time', 'Line Contents')
    header = template % header
    stream.write('\n')
    stream.write(header)
    stream.write('\n')
    stream.write('=' * len(header))
    stream.write('\n')

    if rich:
        # Build the RHS and LHS of the table separately
        lhs_lines = []
        rhs_lines = []
        for lineno, line in zip(linenos, sublines):
            nhits, time, per_hit, percent = display.get(lineno, empty)
            txt = lhs_template % (lineno, nhits, time, per_hit, percent)
            rhs_lines.append(line.rstrip('\n').rstrip('\r'))
            lhs_lines.append(txt)

        rhs_text = '\n'.join(rhs_lines)
        lhs_text = '\n'.join(lhs_lines)

        # Highlight the RHS with Python syntax
        rhs = Syntax(rhs_text, 'python', background_color='default')

        # Use default highlights for the LHS
        # TODO: could use colors to draw the eye to longer running lines.
        lhs = Text(lhs_text)
        ReprHighlighter().highlight(lhs)

        # Use a table to horizontally concatenate the text
        # reference: https://github.com/Textualize/rich/discussions/3076
        table = Table(
            box=None,
            padding=0,
            collapse_padding=True,
            show_header=False,
            show_footer=False,
            show_edge=False,
            pad_edge=False,
            expand=False,
        )
        table.add_row(lhs, '  ', rhs)

        # Use a Console to render to the stream
        # Not sure if we should force-terminal or just specify the color system
        # write_console = Console(file=stream, force_terminal=True, soft_wrap=True)
        write_console = Console(file=stream, soft_wrap=True, color_system='standard')
        write_console.print(table)
        stream.write('\n')
    else:
        for lineno, line in zip(linenos, sublines):
            nhits, time, per_hit, percent = display.get(lineno, empty)
            line_ = line.rstrip('\n').rstrip('\r')
            txt = template % (lineno, nhits, time, per_hit, percent, line_)
            try:
                stream.write(txt)
            except UnicodeEncodeError:
                # todo: better handling of windows encoding issue
                # for now just work around it
                line_ = 'UnicodeEncodeError - help wanted for a fix'
                txt = template % (lineno, nhits, time, per_hit, percent, line_)
                stream.write(txt)

            stream.write('\n')
    stream.write('\n')


def show_text(stats, unit, output_unit=None, stream=None, stripzeros=False,
              details=True, summarize=False, sort=False, rich=False):
    """ Show text for the given timings.
    """
    if stream is None:
        stream = sys.stdout

    if output_unit is not None:
        stream.write('Timer unit: %g s\n\n' % output_unit)
    else:
        stream.write('Timer unit: %g s\n\n' % unit)

    if sort:
        # Order by ascending duration
        stats_order = sorted(stats.items(), key=lambda kv: sum(t[2] for t in kv[1]))
    else:
        # Default ordering
        stats_order = sorted(stats.items())

    if details:
        # Show detailed per-line information for each function.
        for (fn, lineno, name), timings in stats_order:
            show_func(fn, lineno, name, stats[fn, lineno, name], unit,
                      output_unit=output_unit, stream=stream,
                      stripzeros=stripzeros, rich=rich)

    if summarize:
        # Summarize the total time for each function
        for (fn, lineno, name), timings in stats_order:
            total_time = sum(t[2] for t in timings) * unit
            if not stripzeros or total_time:
                line = '%6.2f seconds - %s:%s - %s\n' % (total_time, fn, lineno, name)
                stream.write(line)


def load_stats(filename):
    """ Utility function to load a pickled LineStats object from a given
    filename.
    """
    with open(filename, 'rb') as f:
        return pickle.load(f)


def main():
    """
    The line profiler CLI to view output from ``kernprof -l``.
    """
    def positive_float(value):
        val = float(value)
        if val <= 0:
            raise ArgumentError
        return val

    parser = ArgumentParser()
    parser.add_argument('-V', '--version', action='version', version=__version__)
    parser.add_argument(
        '-u',
        '--unit',
        default='1e-6',
        type=positive_float,
        help='Output unit (in seconds) in which the timing info is displayed (default: 1e-6)',
    )
    parser.add_argument(
        '-z',
        '--skip-zero',
        action='store_true',
        help='Hide functions which have not been called',
    )
    parser.add_argument(
        '-r',
        '--rich',
        action='store_true',
        help='Use rich formatting',
    )
    parser.add_argument(
        '-t',
        '--sort',
        action='store_true',
        help='Sort by ascending total time',
    )
    parser.add_argument(
        '-m',
        '--summarize',
        action='store_true',
        help='Print a summary of total function time',
    )
    parser.add_argument('profile_output', help='*.lprof file created by kernprof')

    args = parser.parse_args()
    lstats = load_stats(args.profile_output)
    show_text(
        lstats.timings, lstats.unit, output_unit=args.unit,
        stripzeros=args.skip_zero,
        rich=args.rich,
        sort=args.sort,
        summarize=args.summarize,
    )


if __name__ == '__main__':
    main()