1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
import array
import gzip
import json
import logging
import os
import sqlite3 as sqlite
import subprocess
from math import lgamma
from tempfile import TemporaryDirectory
from typing import Dict, Generator, List, Optional, Tuple
import numpy as np
import scipy.sparse as sparse
from numba import jit
from .cell_calling import call_cells
from .loompy import connect, create
# Copied from cytograph
@jit("float32(float64[:], float64[:])", nopython=True, parallel=True, nogil=True)
def multinomial_distance(p: np.ndarray, q: np.ndarray) -> float:
N = p.shape[0]
p_sum = p.sum()
q_sum = q.sum()
x = lgamma(N) + lgamma(p_sum + q_sum + N) - lgamma(p_sum + N) - lgamma(q_sum + N)
for k in range(N):
x += lgamma(p[k] + 1) + lgamma(q[k] + 1) - lgamma(1) - lgamma(p[k] + q[k] + 1)
x = np.exp(x)
return 1 - 1 / (1 + x)
# https://maciejkula.github.io/2015/02/22/incremental-construction-of-sparse-matrices/
class IncrementalSparseMatrixUInt16:
def __init__(self, shape: Tuple[int, int]):
self.dtype = np.uint16
self.shape = shape
self.rows = array.array('i')
self.cols = array.array('i')
self.data = array.array('H')
def append(self, i: int, j: int, v: int) -> None:
m, n = self.shape
if (i >= m or j >= n):
raise Exception('Index out of bounds')
self.rows.append(i)
self.cols.append(j)
self.data.append(v)
def tocoo(self) -> sparse.coo_matrix:
rows = np.frombuffer(self.rows, dtype=np.int32)
cols = np.frombuffer(self.cols, dtype=np.int32)
data = np.frombuffer(self.data, dtype=np.uint16)
return sparse.coo_matrix((data, (rows, cols)), shape=self.shape)
def __len__(self) -> int:
return len(self.data)
twobit_to_dna_table = {0: "A", 1: "C", 2: "G", 3: "T"}
dna_to_twobit_table = {"A": 0, "C": 1, "G": 2, "T": 3}
@jit
def twobit_to_dna(twobit: int, size: int) -> str:
result = []
for i in range(size):
x = (twobit & (3 << 2 * i)) >> 2 * i
if x == 0:
result.append("A")
elif x == 1:
result.append("C")
elif x == 2:
result.append("G")
elif x == 3:
result.append("T")
result.reverse()
return "".join(result)
@jit
def dna_to_twobit(dna: str) -> int:
x = 0
for nt in dna:
if nt == "A":
x += 0
elif nt == "C":
x += 1
elif nt == "G":
x += 2
elif nt == "T":
x += 3
x <<= 2
x >>= 2
return x
@jit
def twobit_1hamming(twobit: int, size: int) -> List[int]:
result = []
for i in range(size):
x = (twobit >> 2 * (size - i - 1)) & 3
for j in range(4):
if x == j:
continue
result.append(twobit & ~(3 << 2 * (size - i - 1)) | (j << 2 * (size - i - 1)))
return result
def ixs_thatsort_a2b(a: np.ndarray, b: np.ndarray, check_content: bool = True) -> np.ndarray:
"This is super duper magic sauce to make the order of one list to be like another"
if check_content:
assert len(np.intersect1d(a, b)) == len(a), f"The two arrays are not matching"
return np.argsort(a)[np.argsort(np.argsort(b))]
# TODO: This function is a copy of the same function in loompy.metadata_loaders, call that one instead
def load_sample_metadata(path: str, sample_id: str) -> Dict[str, str]:
if not os.path.exists(path):
raise ValueError(f"Samples metadata file '{path}' not found.")
if path.endswith(".db"):
# sqlite3
with sqlite.connect(path) as db:
cursor = db.cursor()
cursor.execute("SELECT * FROM sample WHERE name = ?", (sample_id,))
keys = [x[0] for x in cursor.description]
vals = cursor.fetchone()
if vals is not None:
return dict(zip(keys, vals))
raise ValueError(f"SampleID '{sample_id}' was not found in the samples database.")
else:
result = {}
with open(path) as f:
headers = [x.lower() for x in f.readline()[:-1].split("\t")]
if "sampleid" not in headers and 'name' not in headers:
raise ValueError("Required column 'SampleID' or 'Name' not found in sample metadata file")
if "sampleid" in headers:
sample_metadata_key_idx = headers.index("sampleid")
else:
sample_metadata_key_idx = headers.index("name")
sample_found = False
for line in f:
items = line[:-1].split("\t")
if len(items) > sample_metadata_key_idx and items[sample_metadata_key_idx] == sample_id:
for i, item in enumerate(items):
result[headers[i]] = item
sample_found = True
if not sample_found:
raise ValueError(f"SampleID '{sample_id}' not found in sample metadata file")
return result
class BusFile:
def __init__(self, path: str, genes_metadata_file: str, genes_metadata_key: str, fragments2genes_file: str, equivalence_classes_file: str, fragments_file: str) -> None:
self.matrix: sparse.coo_matrix = None
logging.info("Loading gene metadata")
self.genes: Dict[str, List[str]] = {} # Keys are Accessions, values are lists of attribute values
self.gene_metadata_attributes: List[str] = [] # Attribute names
with open(genes_metadata_file) as f:
line = f.readline()
self.gene_metadata_attributes = line[:-1].split("\t")
if genes_metadata_key not in self.gene_metadata_attributes:
raise ValueError(f"Metadata key '{genes_metadata_key}' not found in gene metadata file")
key_col = self.gene_metadata_attributes.index(genes_metadata_key)
for line in f:
items = line[:-1].split("\t")
self.genes[items[key_col]] = items
self.accessions = np.array([x for x in self.genes.keys()])
accession_idx = {acc: i for (i, acc) in enumerate(self.accessions)}
self.n_genes = len(self.accessions)
logging.info("Loading fragments-to-gene mappings")
self.gene_for_fragment: List[str] = []
with open(fragments2genes_file) as f:
for line in f:
transcript_id, accession = line[:-1].split("\t")
self.gene_for_fragment.append(accession)
self.gene_for_fragment = np.array(self.gene_for_fragment)
logging.info("Indexing genes")
# Array of indices into self.accessions for each gene in gene_for_transcript
self.gene_for_fragment_idx = np.zeros(len(self.gene_for_fragment), dtype="int32")
for i in range(len(self.gene_for_fragment)):
self.gene_for_fragment_idx[i] = accession_idx[self.gene_for_fragment[i]]
logging.info("Loading equivalence classes")
self.equivalence_classes: Dict[int, List[int]] = {}
with open(equivalence_classes_file) as f:
for line in f:
ec, trs = line[:-1].split("\t")
# Each equivalence class is a set of fragments (transcripts)
self.equivalence_classes[int(ec)] = np.array([int(x) for x in trs.split(",")])
# But we want each equivalence class mapped to a gene (or -1 if multimapping)
logging.info("Mapping equivalence classes to genes")
self.gene_for_ec: Dict[int, int] = {}
for eqc in self.equivalence_classes.keys():
gene = -1
for tid in self.equivalence_classes[eqc]:
if gene == -1:
gene = self.gene_for_fragment_idx[tid]
continue
elif self.gene_for_fragment_idx[tid] != gene:
gene = -1 # Multimapping UMI
break
self.gene_for_ec[eqc] = gene
logging.info("Loading fragment IDs")
self.fragments: List[str] = []
with open(fragments_file) as f:
for line in f:
self.fragments.append(line[:-1])
self.fragments = np.array(self.fragments)
logging.info("Loading BUS records")
fsize = os.path.getsize(path)
with open(path, "rb") as fb:
# Read the header
magic = fb.read(4)
if magic != b"BUS\0":
raise IOError("Not a valid BUS file (four leading magic bytes are missing)")
self.version = int.from_bytes(fb.read(4), byteorder="little", signed=False)
self.barcode_length = int.from_bytes(fb.read(4), byteorder="little", signed=False)
self.umi_length = int.from_bytes(fb.read(4), byteorder="little", signed=False)
tlen = int.from_bytes(fb.read(4), byteorder="little", signed=False)
self.header = fb.read(tlen).decode("utf-8") # BUS does not specify an encoding, but let's assume UTF8
# Read the records
self.n_records = (fsize - tlen - 20) // 32
self.bus = np.fromfile(fb, dtype=[
("barcode", np.uint64),
("UMI", np.uint64),
("equivalence_class", np.int32),
("count", np.uint32),
("flags", np.uint32),
("padding", np.int32)
], count=self.n_records)
self.bus_gene = np.array([self.gene_for_ec[x] for x in self.bus["equivalence_class"]], dtype=np.int32)
self.bus_valid = self.bus_gene != -1
logging.info("Sorting cell IDs")
self.cell_ids = np.unique(self.bus["barcode"])
self.cell_ids.sort()
self.n_cells = len(self.cell_ids) # This will change after error correction
self.layers: Dict[str, sparse.coo_matrix] = {} # Dict of layer name -> sparse matrix
self.ambient_umis = 0
def correct(self, whitelist_file: str = None) -> np.ndarray:
if whitelist_file is not None:
size = 0
whitelist = set()
with open(whitelist_file) as f:
for bc in f:
size = len(bc) - 1 # Don't count the newline
whitelist.add(dna_to_twobit(bc[:-1]))
for i, bc in enumerate(self.bus["barcode"]):
if bc in whitelist:
continue
corrected = False
for mut in twobit_1hamming(int(bc), size=size):
if mut in whitelist:
self.bus["barcode"][i] = mut
corrected = True
break
if not corrected:
self.bus_valid[i] = False
self.cell_ids = np.unique(self.bus["barcode"][self.bus_valid])
self.cell_ids.sort()
self.cell_for_barcode_idx = {bc: i for (i, bc) in enumerate(self.cell_ids)}
self.n_cells = len(self.cell_ids)
def deduplicate(self) -> None:
# Sort by barcode, then by UMI, then by gene
ordering = np.lexsort((self.bus_gene, self.bus["UMI"], self.bus["barcode"]))
self.bus = self.bus[ordering]
self.bus_gene = self.bus_gene[ordering]
self.bus_valid = self.bus_valid[ordering]
dupes = (self.bus["barcode"][1:] == self.bus["barcode"][:-1]) & (self.bus["UMI"][1:] == self.bus["UMI"][:-1]) & (self.bus_gene[1:] == self.bus_gene[:-1])
self.bus_valid[1:][dupes] = False
def count(self) -> sparse.coo_matrix:
logging.info("Counting pseudoalignments for main matrix")
genes = self.bus_gene[self.bus_valid]
cells = [self.cell_for_barcode_idx[x] for x in self.bus["barcode"][self.bus_valid]]
self.matrix = sparse.coo_matrix((np.ones_like(genes), (genes, cells)), shape=(self.n_genes, self.n_cells), dtype=np.uint16)
self.total_umis = np.array(self.matrix.sum(axis=0))[0]
return self.matrix
def remove_empty_beads(self, expected_n_cells: int) -> None:
logging.info("Calling cells")
self.ambient_umis, self.ambient_pvalue = call_cells(self.matrix.tocsc(), expected_n_cells)
self.valid_cells = (self.ambient_pvalue < 0.01) | (self.total_umis > 1500)
self.matrix = self.matrix.tocsr()[:, self.valid_cells]
self.cell_ids = self.cell_ids[self.valid_cells]
self.n_cells = self.valid_cells.sum()
for name in self.layers.keys():
self.layers[name] = self.layers[name].tocsc()[:, self.valid_cells]
logging.info(f"Found {self.n_cells} valid cells and ~{int(self.ambient_umis)} ambient UMIs.")
def count_layer(self, layer_name: str, layer_fragments_file: str) -> sparse.coo_matrix:
fragments_idx = {f: i for i, f in enumerate(self.fragments)}
with open(layer_fragments_file) as f:
include_fragments = set([fragments_idx[x[:-1]] for x in f.readlines()])
logging.info(f"Counting pseudoalignments for layer '{layer_name}'")
# Figure out which of the equivalence classes are relevant
include_ec = {}
for ec, tids in self.equivalence_classes.items():
if any([tid in include_fragments for tid in tids]):
include_ec[ec] = True
else:
include_ec[ec] = False
m = IncrementalSparseMatrixUInt16((self.n_genes, self.n_cells))
for ix in range(self.n_records):
if not self.bus_valid[ix]:
continue
gene = self.bus_gene[ix]
if include_ec[self.bus["equivalence_class"][ix]]:
m.append(gene, self.cell_for_barcode_idx[self.bus["barcode"][ix]], 1)
self.layers[layer_name] = m.tocoo()
return self.layers[layer_name]
def save(self, out_file: str, sample_id: str, samples_metadata_file: str) -> None:
logging.info("Saving")
row_attrs = {}
# Transpose the gene metadata
for i, attr in enumerate(self.gene_metadata_attributes):
row_attrs[attr] = np.array([v[i] for v in self.genes.values()])
# Create cell attributes
col_attrs = {
"CellID": np.array([sample_id + "_" + twobit_to_dna(int(cid), 16) for cid in self.cell_ids]),
"TotalUMIs": self.total_umis[self.valid_cells]
}
# Load sample metadata
metadata = load_sample_metadata(samples_metadata_file, sample_id)
global_attrs = {
**{
"SampleID": sample_id,
"AmbientUMIs": self.ambient_umis,
"RedundantReadFraction": 1 - self.bus_valid.sum() / self.n_records,
"AmbientPValue": self.ambient_pvalue,
"BarcodeTotalUMIs": self.total_umis,
"CellBarcodes": self.valid_cells
}, **metadata}
layers = self.layers.copy()
layers[""] = self.matrix
create(out_file, layers, row_attrs, col_attrs, file_attrs=global_attrs)
def execute(cmd: List[str], synchronous: bool = False) -> Generator:
if synchronous:
yield os.popen(" ".join(cmd)).read()
else:
popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) # type: ignore
for stdout_line in iter(popen.stdout.readline, ""):
yield stdout_line
popen.stdout.close()
return_code = popen.wait()
if return_code:
raise subprocess.CalledProcessError(return_code, cmd)
def create_from_fastq(out_file: str, sample_id: str, fastqs: List[str], index_path: str, samples_metadata_file: str, n_threads: int = 1, temp_folder: str = None, synchronous: bool = False) -> None:
"""
Args:
technology String like "10xv2" or None to read the technology from the sample metadata file
expected_n_cells Expected number of cells captured in the sample, or None to read the number from the sample metadata file
samples_metadata_file Path to tab-delimited file with one header row OR path to sqlite database with one table called "sample"
Remarks:
Samples metadata table should contain these columns:
name Sample name (i.e. sample id)
chemistry 10x chemistry version (v1, v2 or v3)
targetnumcells Number of cells expected in the sample
"""
manifest_file = os.path.join(index_path, "manifest.json")
if not os.path.exists(manifest_file):
raise ValueError(f"Manifest file 'manifest.json' was missing from index at '{index_path}'")
for fastq in fastqs:
if not os.path.exists(fastq):
raise ValueError(f"Fastq file '{fastq}' was not found")
if not os.path.exists(samples_metadata_file):
raise ValueError("Samples metadata file not found")
with open(manifest_file) as f:
manifest = json.load(f)
metadata = load_sample_metadata(samples_metadata_file, sample_id)
if (("technology" not in metadata) and ("chemistry" not in metadata)) or ("targetnumcells" not in metadata):
print(metadata.keys())
raise ValueError("Samples metadata must contain columns 'targetnumcells' and either 'chemistry' or 'technology'")
if "technology" in metadata:
technology = metadata["technology"]
else:
technology = "10x" + metadata["chemistry"]
try:
expected_n_cells = int(metadata["targetnumcells"])
except:
expected_n_cells = 5000
whitelist_file: Optional[str] = os.path.join(index_path, f"{technology}_whitelist.txt")
if not os.path.exists(whitelist_file): # type: ignore
logging.warning(f"Barcode whitelist file {whitelist_file} not found in index folder at '{index_path}'; barcode correction will be skipped.")
whitelist_file = None
with TemporaryDirectory() as d:
if temp_folder is not None:
d = temp_folder
if not os.path.exists(d):
os.mkdir(d)
cmd = ["kallisto", "bus", "-i", os.path.join(index_path, manifest["index_file"]), "-o", d, "-x", technology, "-t", str(n_threads)] + fastqs
logging.info(" ".join(cmd))
for line in execute(cmd, synchronous):
if line != "\n":
logging.info(line[:-1])
run_info: Optional[Dict[str, str]] = None
try:
with open(os.path.join(d, "run_info.json")) as f:
run_info = json.load(f)
except json.JSONDecodeError as e:
with open(os.path.join(d, "run_info.json")) as f:
for line in f:
logging.error(line)
logging.error(f"Error decoding run_info.json: {e}")
bus = BusFile(
os.path.join(d, "output.bus"),
os.path.join(index_path, manifest["gene_metadata_file"]),
manifest["gene_metadata_key"],
os.path.join(index_path, manifest["fragments_to_genes_file"]),
os.path.join(d, "matrix.ec"),
os.path.join(d, "transcripts.txt")
)
logging.info(f"Found {bus.n_records:,} records for {bus.n_genes:,} genes and {bus.n_cells:,} uncorrected cell barcodes.")
if whitelist_file is None:
logging.warning("Not correcting barcodes, because whitelist file was not provided.")
else:
logging.info("Correcting cell barcodes")
bus.correct(whitelist_file)
logging.info(f"Found {bus.n_cells:,} corrected cell barcodes.")
logging.info("Removing redundant reads using UMIs")
bus.deduplicate()
seq_sat = 1 - bus.bus_valid.sum() / bus.n_records
logging.info(f"{int(seq_sat * 100)}% sequencing saturation.")
bus.count()
logging.info(f"Found {bus.matrix.count_nonzero():,} UMIs.")
for layer, layer_def in manifest["layers"].items():
bus.count_layer(layer, os.path.join(index_path, layer_def))
logging.info(f"Found {bus.layers[layer].count_nonzero():,} UMIs.")
bus.remove_empty_beads(expected_n_cells)
logging.info(f"Creating loom file '{out_file}'")
bus.save(out_file, sample_id, samples_metadata_file)
with connect(out_file) as ds:
ds.attrs.Species = manifest["species"]
ds.attrs.Saturation = seq_sat
if run_info is not None:
ds.attrs.NumReadsProcessed = int(run_info["n_processed"])
ds.attrs.NumPseudoaligned = int(run_info["n_pseudoaligned"])
ds.attrs.KallistoCommand = run_info["call"]
ds.attrs.KallistoVersion = run_info["kallisto_version"]
|