File: graph_manager.py

package info (click to toggle)
python-loompy 3.0.7%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,272 kB
  • sloc: python: 3,152; sh: 63; makefile: 16
file content (188 lines) | stat: -rw-r--r-- 6,750 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import scipy.sparse as sparse
import numpy as np
from typing import *
from loompy import timestamp


def _renumber(a: np.ndarray, keys: np.ndarray, values: np.ndarray) -> np.ndarray:
	"""
	Renumber 'a' by replacing any occurrence of 'keys' by the corresponding 'values'
	"""
	ordering = np.argsort(keys)
	keys = keys[ordering]
	values = keys[ordering]
	index = np.digitize(a.ravel(), keys, right=True)
	return(values[index].reshape(a.shape))


class GraphManager:
	"""
	Manage a set of graphs (either for rows or columns) with a backing HDF5 file store
	"""
	def __init__(self, ds: Any, *, axis: int) -> None:
		setattr(self, "!axis", axis)
		setattr(self, "!ds", ds)
		storage: Dict[str, np.ndarray] = {}
		setattr(self, "!storage", storage)

		if ds is not None:
			# Patch old files that use the old naming convention
			if ds._file.mode == "r+":
				if "row_graphs" not in ds._file:
					ds._file.create_group('/row_graphs')
				if "col_graphs" not in ds._file:
					ds._file.create_group('/col_graphs')
				if "row_edges" in ds._file:
					for key in ds._file["row_edges"]:
						ds._file["row_graphs"][key] = ds._file["row_edges"][key]
					del ds._file["row_edges"]
				if "col_edges" in ds._file:
					for key in ds._file["col_edges"]:
						ds._file["col_graphs"][key] = ds._file["col_edges"][key]
					del ds._file["col_edges"]

			a = ["row_graphs", "col_graphs"][self.axis]
			if a in ds._file:
				for key in ds._file[a]:
					self.__dict__["storage"][key] = None
			else:
				if ds.mode == "r+":
					ds._file.create_group(a)

	def keys(self) -> List[str]:
		return list(self.__dict__["storage"].keys())

	def items(self) -> Iterable[Tuple[str, sparse.coo_matrix]]:
		for key in self.keys():
			yield (key, self[key])

	def __len__(self) -> int:
		return len(self.keys())

	def __contains__(self, name: str) -> bool:
		return name in self.keys()

	def __iter__(self) -> Iterator[str]:
		for key in self.keys():
			yield key

	def last_modified(self, name: str = None) -> str:
		"""
		Return a compact ISO8601 timestamp (UTC timezone) indicating when a graph was last modified

		Note: if no graph name is given (the default), the modification time of the most recently modified graph will be returned
		Note: if the graphs do not contain a timestamp, and the mode is 'r+', a new timestamp is created and returned.
		Otherwise, the current time in UTC will be returned.
		"""
		a = ["row_graphs", "col_graphs"][self.axis]

		if name is None:
			if "last_modified" in self.ds._file[a].attrs:
				return self.ds._file[a].attrs["last_modified"]
			elif self.ds._file.mode == 'r+':
				self.ds._file[a].attrs["last_modified"] = timestamp()
				self.ds._file.flush()
				return self.ds._file[a].attrs["last_modified"]
		if name is not None:
			if "last_modified" in self.ds._file[a + name].attrs:
				return self.ds._file[a][name].attrs["last_modified"]
			elif self.ds._file.mode == 'r+':
				self.ds._file[a][name].attrs["last_modified"] = timestamp()
				self.ds._file.flush()
				return self.ds._file[a][name].attrs["last_modified"]
		return timestamp()

	def __getitem__(self, thing: Any) -> sparse.coo_matrix:
		if type(thing) is slice or type(thing) is np.ndarray or type(thing) is int:
			gm = GraphManager(None, axis=self.axis)
			for key, g in self.items():
				# Slice the graph matrix properly without making it dense
				(a, b, w) = (g.row, g.col, g.data)
				indices = np.arange(g.shape[0])[thing]
				mask = np.logical_and(np.in1d(a, indices), np.in1d(b, indices))
				a = a[mask]
				b = b[mask]
				w = w[mask]
				d = dict(zip(np.sort(indices), np.arange(indices.shape[0])))
				a = np.array([d[x] for x in a])
				b = np.array([d[x] for x in b])
				gm[key] = sparse.coo_matrix((w, (a, b)), shape=(len(indices), len(indices)))
			return gm
		elif type(thing) is tuple:
			# A tuple of strings giving alternative names for graphs
			for t in thing:
				if t in self.__dict__["storage"]:
					return self.__getattr__(t)
			raise AttributeError(f"'{type(self)}' object has no attribute {thing}")
		else:
			return self.__getattr__(thing)

	def __getattr__(self, name: str) -> sparse.coo_matrix:
		try:
			g = self.__dict__["storage"][name]
			if g is None:
				# Read values from the HDF5 file
				a = ["row_graphs", "col_graphs"][self.axis]
				r = self.ds._file[a][name]["a"]
				c = self.ds._file[a][name]["b"]
				w = self.ds._file[a][name]["w"]
				g = sparse.coo_matrix((w, (r, c)), shape=(self.ds.shape[self.axis], self.ds.shape[self.axis]))
				self.__dict__["storage"][name] = g
			return g
		except KeyError:
			raise AttributeError(f"'{type(self)}' object has no graph '{name}' on axis {self.axis}")

	def __setitem__(self, name: str, g: sparse.coo_matrix) -> None:
		return self.__setattr__(name, g)

	def __setattr__(self, name: str, g: sparse.coo_matrix) -> None:
		if name.startswith("!"):
			super(GraphManager, self).__setattr__(name[1:], g)
		elif "/" in name:
			raise KeyError("Graph name cannot contain slash (/)")
		else:
			g = sparse.coo_matrix(g)
			if self.ds is not None:
				a = ["row_graphs", "col_graphs"][self.axis]
				if g.shape[0] != self.ds.shape[self.axis] or g.shape[1] != self.ds.shape[self.axis]:
					raise ValueError(f"Adjacency matrix shape for axis {self.axis} must be ({self.ds.shape[self.axis]},{self.ds.shape[self.axis]}) but shape was {g.shape}")
				if name in self.ds._file[a]:
					del self.ds._file[a][name]["a"]
					del self.ds._file[a][name]["b"]
					del self.ds._file[a][name]["w"]
					del self.ds._file[a][name]
				self.ds._file[a].create_group(name)
				self.ds._file[a][name]["a"] = g.row
				self.ds._file[a][name]["b"] = g.col
				self.ds._file[a][name]["w"] = g.data
				self.ds._file[a][name].attrs["last_modified"] = timestamp()
				self.ds._file[a].attrs["last_modified"] = timestamp()
				self.ds._file.attrs["last_modified"] = timestamp()
				self.ds._file.flush()
				self.__dict__["storage"][name] = g
			else:
				self.__dict__["storage"][name] = g

	def __delitem__(self, name: str) -> None:
		return self.__delattr__(name)

	def __delattr__(self, name: str) -> None:
		if self.ds is not None:
			a = ["row_graphs", "col_graphs"][self.axis]
			if self.ds._file[a].__contains__(name):
				del self.ds._file[a][name]["a"]
				del self.ds._file[a][name]["b"]
				del self.ds._file[a][name]["w"]
				del self.ds._file[a][name]
				self.ds._file.flush()
		if name in self.__dict__["storage"]:
			del self.__dict__["storage"][name]
	
	def _permute(self, ordering: np.ndarray) -> None:
		for name in self.keys():
			g = self[name]
			(a, b, w) = (g.row, g.col, g.data)
			a = _renumber(a, np.array(ordering), np.arange(g.shape[1]))
			b = _renumber(b, np.array(ordering), np.arange(g.shape[1]))
			g = sparse.coo_matrix((w, (a, b)), g.shape)
			self[name] = g