File: loom_layer.py

package info (click to toggle)
python-loompy 3.0.7%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,272 kB
  • sloc: python: 3,152; sh: 63; makefile: 16
file content (219 lines) | stat: -rw-r--r-- 8,069 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import numpy as np
from typing import *
import scipy
from loompy import timestamp


class MemoryLoomLayer():
	"""
	A layer residing in memory (without a corresponding layer on disk), typically
	as part of a :class:`loompy.LoomView`. MemoryLoomLayer supports a subset of 
	the operations suported for regular layers.
	"""
	def __init__(self, name: str, matrix: np.ndarray) -> None:
		self.name = name  #: Name of the layer
		self.shape = matrix.shape  #: Shape of the layer
		self.values = matrix

	def __getitem__(self, slice: Tuple[Union[int, slice], Union[int, slice]]) -> np.ndarray:
		return self.values[slice]

	def __setitem__(self, slice: Tuple[Union[int, slice], Union[int, slice]], data: np.ndarray) -> None:
		self.values[slice] = data

	def sparse(self, rows: np.ndarray, cols: np.ndarray) -> scipy.sparse.coo_matrix:
		"""
		Return the layer as :class:`scipy.sparse.coo_matrix`
		"""
		return scipy.sparse.coo_matrix(self.values[rows, :][:, cols])

	def permute(self, ordering: np.ndarray, *, axis: int) -> None:
		"""
		Permute the layer along an axis

		Args:
			axis: The axis to permute (0, permute the rows; 1, permute the columns)
			ordering: The permutation vector
		"""
		if axis == 0:
			self.values = self.values[ordering, :]
		elif axis == 1:
			self.values = self.values[:, ordering]
		else:
			raise ValueError("axis must be 0 or 1")


class LoomLayer():
	"""
	Represents a layer (matrix) of values in the loom file, which can be accessed by slicing.
	"""
	
	def __init__(self, name: str, ds: Any) -> None:
		self.ds = ds  #: The :class:`.LoomConnection` object this layer belongs to
		self.name = name  #: Name of the layer (str)
		self.shape = ds.shape  #: Shape of the layer, tuple of (n_rows, n_cols)
		self.dtype = ""  #: Datatype of the layer (str)
		if name == "":
			self.dtype = self.ds._file["/matrix"].dtype
		else:
			self.dtype = self.ds._file["/layers/" + self.name].dtype

	def last_modified(self) -> str:
		"""
		Return a compact ISO8601 timestamp (UTC timezone) indicating when the file was last modified

		Note: if the layer does not contain a timestamp, and the mode is 'r+', a new timestamp will be set and returned.
		Otherwise, the current time in UTC will be returned.
		"""
		if self.name == "":
			if "last_modified" in self.ds._file["/matrix"].attrs:
				return self.ds._file["/matrix"].attrs["last_modified"]
			elif self.ds._file.mode == 'r+':
				self.ds._file["/matrix"].attrs["last_modified"] = timestamp()
				self.ds._file.flush()
				return self.ds._file["/matrix"].attrs["last_modified"]

		if self.name != "":
			if "last_modified" in self.ds._file["/layers/" + self.name].attrs:
				return self.ds._file["/layers/" + self.name].attrs["last_modified"]
			elif self.ds._file.mode == 'r+':
				self.ds._file["/layers/" + self.name].attrs["last_modified"] = timestamp()
				self.ds._file.flush()
				return self.ds._file["/layers/" + self.name].attrs["last_modified"]

		return timestamp()

	def __getitem__(self, slice: Tuple[Union[int, slice], Union[int, slice]]) -> np.ndarray:
		if self.name == "":
			return self.ds._file['/matrix'].__getitem__(slice)
		return self.ds._file['/layers/' + self.name].__getitem__(slice)

	def __setitem__(self, slice: Tuple[Union[int, slice], Union[int, slice]], data: np.ndarray) -> None:
		if self.name == "":
			self.ds._file['/matrix'][slice] = data
			self.ds._file["/matrix"].attrs["last_modified"] = timestamp()
			self.ds._file.attrs["last_modified"] = timestamp()
			self.ds._file.flush()
		else:
			self.ds._file['/layers/' + self.name][slice] = data
			self.ds._file["/layers/" + self.name].attrs["last_modified"] = timestamp()
			self.ds._file.attrs["last_modified"] = timestamp()
			self.ds._file.flush()

	def sparse(self, rows: np.ndarray = None, cols: np.ndarray = None) -> scipy.sparse.coo_matrix:
		if rows is not None:
			if np.issubdtype(rows.dtype, np.bool_):
				rows = np.where(rows)[0]
		if cols is not None:
			if np.issubdtype(cols.dtype, np.bool_):
				cols = np.where(cols)[0]
				
		n_genes = self.ds.shape[0] if rows is None else rows.shape[0]
		n_cells = self.ds.shape[1] if cols is None else cols.shape[0]

		data: List[np.ndarray] = []
		row: List[np.ndarray] = []
		col: List[np.ndarray] = []
		i = 0
		for (ix, selection, view) in self.ds.scan(items=cols, axis=1, layers=[self.name], what=["layers"]):
			if rows is not None:
				vals = view.layers[self.name][rows, :]
			else:
				vals = view.layers[self.name][:, :]
			nonzeros = np.where(vals != 0)
			data.append(vals[nonzeros])
			row.append(nonzeros[0])
			col.append(nonzeros[1] + i)
			i += selection.shape[0]
		return scipy.sparse.coo_matrix((np.concatenate(data), (np.concatenate(row), np.concatenate(col))), shape=(n_genes, n_cells))

	def _resize(self, size: Tuple[int, int], axis: int = None) -> None:
		"""Resize the dataset, or the specified axis.

		The dataset must be stored in chunked format; it can be resized up to the "maximum shape" (keyword maxshape) specified at creation time.
		The rank of the dataset cannot be changed.
		"Size" should be a shape tuple, or if an axis is specified, an integer.

		BEWARE: This functions differently than the NumPy resize() method!
		The data is not "reshuffled" to fit in the new shape; each axis is grown or shrunk independently.
		The coordinates of existing data are fixed.
		"""
		if self.name == "":
			self.ds._file['/matrix'].resize(size, axis)
		else:
			self.ds._file['/layers/' + self.name].resize(size, axis)

	def map(self, f_list: List[Callable[[np.ndarray], int]], axis: int = 0, chunksize: int = 1000, selection: np.ndarray = None) -> List[np.ndarray]:
		"""
		Apply a function along an axis without loading the entire dataset in memory.

		Args:
			f_list (list of func):		Function(s) that takes a numpy ndarray as argument

			axis (int):		Axis along which to apply the function (0 = rows, 1 = columns)

			chunksize (int): Number of rows (columns) to load per chunk

			selection (array of bool): Columns (rows) to include

		Returns:
			numpy.ndarray result of function application

			If you supply a list of functions, the result will be a list of numpy arrays. This is more
			efficient than repeatedly calling map() one function at a time.
		"""
		if hasattr(f_list, '__call__'):
			raise ValueError("f_list must be a list of functions, not a function itself")

		result = []
		if axis == 0:
			rows_per_chunk = chunksize
			for i in range(len(f_list)):
				result.append(np.zeros(self.shape[0]))
			ix = 0
			while ix < self.shape[0]:
				rows_per_chunk = min(self.shape[0] - ix, rows_per_chunk)
				if selection is not None:
					chunk = self[ix:ix + rows_per_chunk, :][:, selection]
				else:
					chunk = self[ix:ix + rows_per_chunk, :]
				for i in range(len(f_list)):
					result[i][ix:ix + rows_per_chunk] = np.apply_along_axis(f_list[i], 1, chunk)
				ix = ix + rows_per_chunk
		elif axis == 1:
			cols_per_chunk = chunksize
			for i in range(len(f_list)):
				result.append(np.zeros(self.shape[1]))
			ix = 0
			while ix < self.shape[1]:
				cols_per_chunk = min(self.shape[1] - ix, cols_per_chunk)
				if selection is not None:
					chunk = self[:, ix:ix + cols_per_chunk][selection, :]
				else:
					chunk = self[:, ix:ix + cols_per_chunk]
				for i in range(len(f_list)):
					result[i][ix:ix + cols_per_chunk] = np.apply_along_axis(f_list[i], 0, chunk)
				ix = ix + cols_per_chunk
		return result

	def _permute(self, ordering: np.ndarray, *, axis: int) -> None:
		if self.name == "":
			obj = self.ds._file['/matrix']
		else:
			obj = self.ds._file['/layers/' + self.name]
		if axis == 0:
			chunksize = 5000
			start = 0
			while start < self.shape[1]:
				submatrix = obj[:, start:start + chunksize]
				obj[:, start:start + chunksize] = submatrix[ordering, :]
				start = start + chunksize
		elif axis == 1:
			chunksize = 100000000 // self.shape[1]
			start = 0
			while start < self.shape[0]:
				submatrix = obj[start:start + chunksize, :]
				obj[start:start + chunksize, :] = submatrix[:, ordering]
				start = start + chunksize
		else:
			raise ValueError("axis must be 0 or 1")