1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
|
# Copyright (c) 2015 Sten Linnarsson
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import gzip
import logging
import os.path
import re
from shutil import copyfile
from typing import Tuple, Union, Any, Dict, List, Iterable, Callable, Optional
import h5py
import numpy as np
import numpy_groupies.aggregate_numpy as npg
import scipy.sparse
from scipy.io import mmread
import scipy.sparse as sparse
import loompy
from loompy import deprecated, timestamp
from loompy.metadata_loaders import make_row_attrs_from_gene_metadata, load_sample_metadata
from .cell_calling import call_cells
class LoomConnection:
'''
A connection to a Loom file on disk. Typically LoomConnection objects are created using one of the
functions on the loompy module, such as :func:`loompy.connect` or :func:`loompy.new`. LoomConnection
objects are context managers and should normally be
wrapped in a ``with`` block:
.. highlight:: python
.. code-block:: python
import loompy
with loompy.connect("mydata.loom") as ds:
print(ds.ca.keys())
Inside the ``with`` block, you can access the dataset (here using the variable ``ds``). When execution
leaves the ``with`` block, the connection is automatically closed, freeing up resources.
'''
def __init__(self, filename: str, mode: str = 'r+', *, validate: bool = True) -> None:
"""
Establish a connection to a Loom file.
Args:
filename: Name of the .loom file to open
mode: read/write mode, accepts 'r+' (read/write) or
'r' (read-only), defaults to 'r+' without arguments,
and to 'r' with incorrect arguments
validate: Validate that the file conforms with the Loom specification
Returns:
Nothing.
"""
if not os.path.exists(filename):
raise IOError(f"File '{filename}' not found")
# make sure a valid mode was passed
if mode != 'r+' and mode != 'r':
raise ValueError("Mode must be either 'r' or 'r+'")
self.filename = filename #: Path to the file (as given when the LoomConnection was created)
# Validate the file
if validate:
lv = loompy.LoomValidator()
if not lv.validate(filename):
raise ValueError("\n".join(lv.errors) + f"\n{filename} does not appear to be a valid Loom file according to Loom spec version '{lv.version}'")
self._file = h5py.File(filename, mode)
self._closed = False
if "matrix" in self._file:
self.shape = self._file["/matrix"].shape #: Shape of the dataset (n_rows, n_cols)
else:
self.shape = (0, 0)
self.layers = loompy.LayerManager(self)
self.view = loompy.ViewManager(self) #: Create a view of the file by slicing this attribute, like ``ds.view[:100, :100]``
self.ra = loompy.AttributeManager(self, axis=0) #: Row attributes, dict-like with np.ndarray values
self.ca = loompy.AttributeManager(self, axis=1) #: Column attributes, dict-like with np.ndarray values
self.attrs = loompy.GlobalAttributeManager(self._file) #: Global attributes
self.row_graphs = loompy.GraphManager(self, axis=0) #: Row graphs, dict-like with values that are :class:`scipy.sparse.coo_matrix` objects
self.col_graphs = loompy.GraphManager(self, axis=1) #: Column graphs, dict-like with values that are :class:`scipy.sparse.coo_matrix` objects
# Compatibility
self.layer = self.layers
self.row_attrs = self.ra
self.col_attrs = self.ca
@property
def mode(self) -> str:
"""
The access mode of the connection ('r' or 'r+')
"""
return self._file.mode
def last_modified(self) -> str:
"""
Return an ISO8601 timestamp indicating when the file was last modified
Returns:
An ISO8601 timestamp indicating when the file was last modified
Remarks:
If the file has no timestamp, and mode is 'r+', a new timestamp is created and returned.
Otherwise, the current time in UTC is returned
"""
if "last_modified" in self.attrs:
return self.attrs["last_modified"]
elif self.mode == "r+":
# Make sure the file has modification timestamps
self.attrs["last_modified"] = timestamp()
return self.attrs["last_modified"]
return timestamp()
def get_changes_since(self, timestamp: str) -> Dict[str, List]:
"""
Get a summary of the parts of the file that changed since the given time
Args:
timestamp: ISO8601 timestamp
Return:
dict: Dictionary like ``{"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}`` listing the names of objects that were modified since the given time
"""
rg = []
cg = []
ra = []
ca = []
layers = []
if self.last_modified() > timestamp:
if self.row_graphs.last_modified() > timestamp:
for name in self.row_graphs.keys():
if self.row_graphs.last_modified(name) > timestamp:
rg.append(name)
if self.col_graphs.last_modified() > timestamp:
for name in self.col_graphs.keys():
if self.col_graphs.last_modified(name) > timestamp:
cg.append(name)
if self.ra.last_modified() > timestamp:
for name in self.ra.keys():
if self.ra.last_modified(name) > timestamp:
ra.append(name)
if self.ca.last_modified() > timestamp:
for name in self.ca.keys():
if self.ca.last_modified(name) > timestamp:
ca.append(name)
if self.layers.last_modified() > timestamp:
for name in self.layers.keys():
if self.layers.last_modified(name) > timestamp:
layers.append(name)
return {"row_graphs": rg, "col_graphs": cg, "row_attrs": ra, "col_attrs": ca, "layers": layers}
def __enter__(self) -> Any:
"""
Context manager, to support "with loompy.connect(..)" construct
"""
return self
def __exit__(self, type: Any, value: Any, traceback: Any) -> None:
"""
Context manager, to support "with loompy.connect(..)" construct
"""
if self.shape[0] == 0 or self.shape[1] == 0:
raise ValueError("Newly created loom file must be filled with data before leaving the 'with' statement")
if not self.closed:
self.close(True)
def _repr_html_(self) -> str:
"""
Return an HTML representation of the loom file, showing the upper-left 10x10 corner.
"""
if not self.closed:
return loompy.to_html(self)
else:
return "This LoomConnection has been closed"
def __getitem__(self, slice_: Any) -> np.ndarray:
"""
Get a slice of the main matrix.
Args:
slice: A slice object (see http://docs.h5py.org/en/latest/high/dataset.html), or np.ndarray, or int
Returns:
A numpy ndarray matrix
"""
if type(slice_) is str:
return self.layers[slice_]
if type(slice_) is not tuple:
raise ValueError("Slice must be a 2-tuple")
return self.layers[""][slice_]
def __setitem__(self, slice_: Any, data: np.ndarray) -> None:
"""
Assign a slice of the main matrix.
Args:
slice_: A slice object (see http://docs.h5py.org/en/latest/high/dataset.html), or np.ndarray, or int
data: A matrix corresponding to the slice, of the same datatype as the main matrix
Returns:
Nothing.
"""
if type(slice_) is str:
self.layers[slice_] = data
else:
self.layers[""][slice_] = data
def sparse(self, rows: np.ndarray = None, cols: np.ndarray = None, layer: str = None) -> scipy.sparse.coo_matrix:
"""
Return the main matrix or specified layer as a scipy.sparse.coo_matrix, without loading dense matrix in RAM
Args:
rows: Rows to include, or None to include all
cols: Columns to include, or None to include all
layer: Layer to return, or None to return the default layer
Returns:
Sparse matrix (:class:`scipy.sparse.coo_matrix`)
"""
if layer is None:
return self.layers[""].sparse(rows=rows, cols=cols)
else:
return self.layers[layer].sparse(rows=rows, cols=cols)
def close(self, suppress_warning: bool = False) -> None:
"""
Close the connection. After this, the connection object becomes invalid. Warns user if called after closing.
Args:
suppress_warning: Suppresses warning message if True (defaults to false)
"""
if self._file is None:
if not suppress_warning:
# Warn user that they're being paranoid
# and should clean up their code
logging.warn("Connection to %s is already closed", self.filename)
else:
self._file.close()
self._file = None
self.layers = None # type: ignore
self.ra = None # type: ignore
self.row_attrs = None # type: ignore
self.ca = None # type: ignore
self.col_attrs = None # type: ignore
self.row_graphs = None # type: ignore
self.col_graphs = None # type: ignore
self.shape = (0, 0)
self._closed = True
@property
def closed(self) -> bool:
"""
True if the connection is closed.
"""
return self._closed
def set_layer(self, name: str, matrix: np.ndarray, chunks: Tuple[int, int] = (64, 64), chunk_cache: int = 512, dtype: str = "float32", compression_opts: int = 2) -> None:
"""
**DEPRECATED** - Use `ds.layer.Name = matrix` or `ds.layer[`Name`] = matrix` instead
"""
deprecated("'set_layer' is deprecated. Use 'ds.layer.Name = matrix' or 'ds.layer['Name'] = matrix' instead")
self.layers[name] = matrix
def add_columns(self, layers: Union[np.ndarray, Dict[str, np.ndarray], loompy.LayerManager], col_attrs: Dict[str, np.ndarray], *, row_attrs: Dict[str, np.ndarray] = None, fill_values: Dict[str, np.ndarray] = None) -> None:
"""
Add columns of data and attribute values to the dataset.
Args:
layers (dict or numpy.ndarray or LayerManager):
Either:
1) A N-by-M matrix of float32s (N rows, M columns) in this case columns are added at the default layer
2) A dict {layer_name : matrix} specified so that the matrix (N, M) will be added to layer `layer_name`
3) A LayerManager object (such as what is returned by view.layers)
col_attrs (dict):
Column attributes, where keys are attribute names and values are numpy arrays (float or string) of length M
row_attrs (dict):
Optional row attributes, where keys are attribute names and values are numpy arrays (float or string) of length M
fill_values: dictionary of values to use if a column attribute is missing, or "auto" to fill with zeros or empty strings
Returns:
Nothing.
Notes
-----
- This will modify the underlying HDF5 file, which will interfere with any concurrent readers.
- Column attributes in the file that are NOT provided, will be deleted (unless fill value provided).
- Array with Nan should not be provided
"""
if self._file.mode != "r+":
raise IOError("Cannot add columns when connected in read-only mode")
# If this is an empty loom file, just assign the provided row and column attributes, and set the shape
is_new = self.shape == (0, 0)
if is_new:
if row_attrs is None:
raise ValueError("row_attrs must be provided when adding to an empty (new) Loom file")
for k, v in row_attrs.items():
self.ra[k] = v
self.shape = (self.ra[k].shape[0], self.shape[1])
if len(self.ca) == 0:
for k, v in col_attrs.items():
v = np.array(v)
self.ca[k] = np.zeros(0, v.dtype)
layers_dict: Dict[str, np.ndarray] = {}
if isinstance(layers, np.ndarray):
layers_dict = {"": layers}
elif isinstance(layers, loompy.LayerManager):
layers_dict = {k: v[:, :] for k, v in layers.items()}
elif isinstance(layers, dict):
layers_dict = layers
else:
raise ValueError("Invalid type for layers argument")
n_cols = 0
for layer, matrix in layers_dict.items():
if not is_new and layer not in self.layers.keys():
raise ValueError(f"Layer {layer} does not exist in the target loom file")
if matrix.shape[0] != self.shape[0]:
raise ValueError(f"Layer {layer} has {matrix.shape[0]} rows but file has {self.shape[0]}")
if n_cols == 0:
n_cols = matrix.shape[1]
elif matrix.shape[1] != n_cols:
raise ValueError(f"Layer {layer} has {matrix.shape[1]} columns but the first layer had {n_cols}")
did_remove = False
todel = [] # type: List[str]
for key, vals in col_attrs.items():
if key not in self.col_attrs:
if fill_values is not None:
if fill_values == "auto":
fill_with = np.zeros(1, dtype=col_attrs[key].dtype)[0]
else:
fill_with = fill_values[key]
self.ca[key] = np.array([fill_with] * self.shape[1])
else:
did_remove = True
todel.append(key)
if len(vals) != n_cols:
raise ValueError(f"Each column attribute must have exactly {n_cols} values, but {key} had {len(vals)}")
for key in todel:
del col_attrs[key]
if did_remove:
logging.debug("Some column attributes were removed: " + ",".join(todel))
todel = []
did_remove = False
for key in self.col_attrs.keys():
if key not in col_attrs:
if fill_values is not None:
if fill_values == "auto":
fill_with = np.zeros(1, dtype=self.col_attrs[key].dtype)[0]
else:
fill_with = fill_values[key]
col_attrs[key] = np.array([fill_with] * n_cols)
else:
did_remove = True
todel.append(key)
for key in todel:
del self.ca[key] # delete_attr(key, axis=1)
if did_remove:
logging.debug("Some column attributes were removed: " + ",".join(todel))
if is_new:
for k, v in layers_dict.items():
self.layers[k] = v
for k, v in col_attrs.items():
self.ca[k] = v
else:
n_cols = n_cols + self.shape[1]
old_n_cols = self.shape[1]
# Must set new shape here, otherwise the attribute manager will complain
self.shape = (self.shape[0], n_cols)
todel = []
for key, vals in col_attrs.items():
vals = np.array(vals)
if vals.shape[1:] != self.col_attrs[key].shape[1:]:
logging.debug(f"Removing attribute {key} because shape {vals.shape} did not match existing shape {self.col_attrs[key].shape} beyond first dimension")
todel.append(key)
else:
self.ca[key] = np.concatenate([self.ca[key], vals])
for key in todel:
del self.ca[key]
# Add the columns layerwise
for key in self.layers.keys():
self.layers[key]._resize(n_cols, axis=1)
self.layers[key][:, old_n_cols:n_cols] = layers_dict[key]
self._file.flush()
def add_loom(self, other_file: str, key: str = None, fill_values: Dict[str, np.ndarray] = None, batch_size: int = 1000, convert_attrs: bool = False, include_graphs: bool = False) -> None:
"""
Add the content of another loom file
Args:
other_file: filename of the loom file to append
key: Primary key to use to align rows in the other file with this file
fill_values: default values to use for missing attributes (or None to drop missing attrs, or 'auto' to fill with sensible defaults)
batch_size: the batch size used by batchscan (limits the number of rows/columns read in memory)
convert_attrs: convert file attributes that differ between files into column attributes
include_graphs: if true, include all the column graphs from other_file that are also present in this file
Returns:
Nothing, but adds the loom file. Note that the other loom file must have exactly the same
number of rows, and must have exactly the same column attributes.
Adds all the contents including layers but ignores layers in `other_file` that are not already present in self
Note that graphs are normally not added, unless include_graphs == True, in which case column graphs are added
"""
if self._file.mode != "r+":
raise IOError("Cannot add data when connected in read-only mode")
# Connect to the loom files
with loompy.connect(other_file) as other:
# Verify that the row keys can be aligned
ordering = None
if key is not None:
# This was original Sten's version but it creates a 400M entries array in memory
# ordering = np.where(other.row_attrs[key][None, :] == self.row_attrs[key][:, None])[1]
def ixs_thatsort_a2b(a: np.ndarray, b: np.ndarray, check_content: bool = True) -> np.ndarray:
"This is super duper magic sauce to make the order of one list to be like another"
if check_content:
assert len(np.intersect1d(a, b)) == len(a), "The two arrays are not matching"
return np.argsort(a)[np.argsort(np.argsort(b))]
ordering = ixs_thatsort_a2b(a=other.row_attrs[key], b=self.row_attrs[key])
pk1 = sorted(other.row_attrs[key])
pk2 = sorted(self.row_attrs[key])
for ix, val in enumerate(pk1):
if pk2[ix] != val:
raise ValueError("Primary keys are not 1-to-1 alignable!")
diff_layers = set(self.layers.keys()) - set(other.layers.keys())
if len(diff_layers) > 0:
raise ValueError("%s is missing a layer, cannot merge with current file. layers missing:%s" % (other_file, diff_layers))
if convert_attrs:
# Prepare to replace any global attribute that differ between looms or is missing in either loom with a column attribute.
globalkeys = set(self.attrs)
globalkeys.update(other.attrs)
for globalkey in globalkeys:
if globalkey in self.attrs and globalkey in other.attrs and self.attrs[globalkey] == other.attrs[globalkey]:
continue
if globalkey not in self.col_attrs:
self_value = self.attrs[globalkey] if globalkey in self.attrs else np.zeros(1, dtype=other.attrs[globalkey].dtype)[0]
self.col_attrs[globalkey] = np.array([self_value] * self.shape[1])
if globalkey not in other.col_attrs:
other_value = other.attrs[globalkey] if globalkey in other.attrs else np.zeros(1, dtype=self.attrs[globalkey].dtype)[0]
other.col_attrs[globalkey] = np.array([other_value] * other.shape[1])
if globalkey in self.attrs:
delattr(self.attrs, globalkey)
for (ix, selection, vals) in other.batch_scan_layers(axis=1, layers=self.layers.keys(), batch_size=batch_size):
ca = {key: v[selection] for key, v in other.col_attrs.items()}
if ordering is not None:
vals = {key: val[ordering, :] for key, val in vals.items()}
self.add_columns(vals, ca, fill_values=fill_values) # type: ignore
if include_graphs:
for gname in self.col_graphs.keys():
if gname in other.col_graphs:
g1 = self.col_graphs[gname]
g2 = other.col_graphs[gname]
n = self.shape[1]
m = other.shape[1]
g3 = scipy.sparse.coo_matrix((np.concatenate([g1.data, g2.data]), (np.concatenate([g1.row, g2.row + n]), np.concatenate([g1.col, g2.col + n]))), shape=(n + m, n + m))
self.col_graphs[gname] = g3
def delete_attr(self, name: str, axis: int = 0) -> None:
"""
**DEPRECATED** - Use `del ds.ra.key` or `del ds.ca.key` instead, where `key` is replaced with the attribute name
"""
deprecated("'delete_attr' is deprecated. Use 'del ds.ra.key' or 'del ds.ca.key' instead")
if axis == 0:
del self.ra[name]
else:
del self.ca[name]
def set_attr(self, name: str, values: np.ndarray, axis: int = 0, dtype: str = None) -> None:
"""
**DEPRECATED** - Use `ds.ra.key = values` or `ds.ca.key = values` instead
"""
deprecated("'set_attr' is deprecated. Use 'ds.ra.key = values' or 'ds.ca.key = values' instead")
if axis == 0:
self.ra[name] = values
else:
self.ca[name] = values
def list_edges(self, *, axis: int) -> List[str]:
"""
**DEPRECATED** - Use `ds.row_graphs.keys()` or `ds.col_graphs.keys()` instead
"""
deprecated("'list_edges' is deprecated. Use 'ds.row_graphs.keys()' or 'ds.col_graphs.keys()' instead")
if axis == 0:
return self.row_graphs.keys()
elif axis == 1:
return self.col_graphs.keys()
else:
return []
def get_edges(self, name: str, *, axis: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
**DEPRECATED** - Use `ds.row_graphs[name]` or `ds.col_graphs[name]` instead
"""
deprecated("'get_edges' is deprecated. Use 'ds.row_graphs[name]' or 'ds.col_graphs[name]' instead")
if axis == 0:
g = self.row_graphs[name]
return (g.row, g.col, g.data)
if axis == 1:
g = self.col_graphs[name]
return (g.row, g.col, g.data)
raise ValueError("Axis must be 0 or 1")
def set_edges(self, name: str, a: np.ndarray, b: np.ndarray, w: np.ndarray, *, axis: int) -> None:
"""
**DEPRECATED** - Use `ds.row_graphs[name] = g` or `ds.col_graphs[name] = g` instead
"""
deprecated("'set_edges' is deprecated. Use 'ds.row_graphs[name] = g' or 'ds.col_graphs[name] = g' instead")
try:
g = scipy.sparse.coo_matrix((w, (a, b)), (self.shape[axis], self.shape[axis]))
except Exception:
raise ValueError("Input arrays could not be converted to a sparse matrix")
if axis == 0:
self.row_graphs[name] = g
elif axis == 1:
self.col_graphs[name] = g
else:
raise ValueError("axis must be 0 (rows) or 1 (columns)")
def scan(self, *, items: np.ndarray = None, axis: int = None, layers: Iterable = None, key: str = None, batch_size: int = 8 * 64, what: List[str] = ["col_attrs", "row_attrs", "layers", "col_graphs", "row_graphs"]) -> Iterable[Tuple[int, np.ndarray, loompy.LoomView]]:
"""
Scan across one axis and return batches of rows (columns) as LoomView objects
Args
----
items: np.ndarray
the indexes [0, 2, 13, ... ,973] of the rows/cols to include along the axis
OR: boolean mask array giving the rows/cols to include
axis: int
0:rows or 1:cols
batch_size: int
the chuncks returned at every element of the iterator
layers: iterable
if specified it will batch scan only across some of the layers of the loom file
if layers == None, all layers will be scanned
if layers == [""] or "", only the default layer will be scanned
key:
Name of primary key attribute. If specified, return the values sorted by the key
Returns
------
Iterable that yields triplets of (ix, indexes, view) where
ix: int
first position / how many rows/cols have been yielded alredy
indexes: np.ndarray[int]
the indexes with the same numbering of the input args cells / genes (i.e. ``np.arange(len(ds.shape[axis]))``)
this is ``ix + selection``
view: LoomView
a view corresponding to the current chunk
"""
if "layers" not in what:
raise ValueError("Layers must be included in 'what' parameter (but you can select specific layers using 'layers')")
if axis is None:
raise ValueError("Axis must be given (0 = rows, 1 = cols)")
if layers is None:
layers = self.layers.keys()
if layers == "":
layers = [""]
if (items is not None) and (np.issubdtype(items.dtype, np.bool_)):
items = np.where(items)[0]
ordering: Union[np.ndarray, slice] = None
vals: Dict[str, loompy.MemoryLoomLayer] = {}
if axis == 1:
if key is not None:
ordering = np.argsort(self.ra[key])
else:
# keep everything in original order
ordering = slice(None)
if items is None:
items = np.fromiter(range(self.shape[1]), dtype='int')
cols_per_chunk = batch_size
ix = 0
while ix < self.shape[1]:
cols_per_chunk = min(self.shape[1] - ix, cols_per_chunk)
selection = items - ix
# Pick out the cells that are in this batch
selection = selection[np.where(np.logical_and(selection >= 0, selection < cols_per_chunk))[0]]
if selection.shape[0] == 0:
ix += cols_per_chunk
continue
if selection.shape[0] == cols_per_chunk:
selection = None # Meaning, select all columns
# Load the whole chunk from the file, then extract genes and cells using fancy indexing
for layer in layers:
temp = self.layers[layer][:, ix:ix + cols_per_chunk]
temp = temp[ordering, :]
if selection is not None:
temp = temp[:, selection]
vals[layer] = loompy.MemoryLoomLayer(layer, temp)
lm = loompy.LayerManager(None)
for key, layer in vals.items():
lm[key] = loompy.MemoryLoomLayer(key, layer)
ra = self.ra[ordering] if "row_attrs" in what else {}
if "col_attrs" in what:
if selection is not None:
ca = self.ca[ix + selection]
else:
ca = self.ca[ix: ix + cols_per_chunk]
else:
ca = {}
rg = self.row_graphs[ordering] if "row_graphs" in what else None
if "col_graphs" in what:
if selection is not None:
cg = self.col_graphs[ix + selection]
else:
cg = self.col_graphs[ix: ix + cols_per_chunk]
else:
cg = None
view = loompy.LoomView(lm, ra, ca, rg, cg, filename=self.filename, file_attrs=self.attrs)
if selection is not None:
yield (ix, ix + selection, view)
else:
yield (ix, ix + np.arange(cols_per_chunk), view)
ix += cols_per_chunk
elif axis == 0:
if key is not None:
ordering = np.argsort(self.ca[key])
else:
# keep everything in original order
ordering = slice(None)
if items is None:
items = np.fromiter(range(self.shape[0]), dtype='int')
rows_per_chunk = batch_size
ix = 0
while ix < self.shape[0]:
rows_per_chunk = min(self.shape[0] - ix, rows_per_chunk)
selection = items - ix
# Pick out the genes that are in this batch
selection = selection[np.where(np.logical_and(selection >= 0, selection < rows_per_chunk))[0]]
if selection.shape[0] == 0:
ix += rows_per_chunk
continue
if selection.shape[0] == rows_per_chunk:
selection = None # Meaning, select all rows
# Load the whole chunk from the file, then extract genes and cells using fancy indexing
for layer in layers:
temp = self.layers[layer][ix:ix + rows_per_chunk, :]
temp = temp[:, ordering]
if selection is not None:
temp = temp[selection, :]
vals[layer] = loompy.MemoryLoomLayer(layer, temp)
lm = loompy.LayerManager(None)
for key, layer in vals.items():
lm[key] = loompy.MemoryLoomLayer(key, layer)
if "row_attrs" in what:
if selection is not None:
ra = self.ra[ix + selection]
else:
ra = self.ra[ix: ix + rows_per_chunk]
else:
ra = {}
ca = self.ca[ordering] if "col_attrs" in what else {}
if "row_graphs" in what:
if selection is not None:
rg = self.row_graphs[ix + selection]
else:
rg = self.row_graphs[ix: ix + rows_per_chunk]
else:
rg = None
cg = self.col_graphs[ordering] if "col_graphs" in what else None
view = loompy.LoomView(lm, ra, ca, rg, cg, filename=self.filename, file_attrs=self.attrs)
if selection is not None:
yield (ix, ix + selection, view)
else:
yield (ix, ix + np.arange(rows_per_chunk), view)
ix += rows_per_chunk
else:
raise ValueError("axis must be 0 or 1")
def batch_scan(self, cells: np.ndarray = None, genes: np.ndarray = None, axis: int = 0, batch_size: int = 1000, layer: str = None) -> Iterable[Tuple[int, np.ndarray, np.ndarray]]:
"""
**DEPRECATED** - Use `scan` instead
"""
deprecated("'batch_scan' is deprecated. Use 'scan' instead")
if cells is None:
cells = np.fromiter(range(self.shape[1]), dtype='int')
if genes is None:
genes = np.fromiter(range(self.shape[0]), dtype='int')
if layer is None:
layer = ""
if axis == 1:
cols_per_chunk = batch_size
ix = 0
while ix < self.shape[1]:
cols_per_chunk = min(self.shape[1] - ix, cols_per_chunk)
selection = cells - ix
# Pick out the cells that are in this batch
selection = selection[np.where(np.logical_and(selection >= 0, selection < cols_per_chunk))[0]]
if selection.shape[0] == 0:
ix += cols_per_chunk
continue
# Load the whole chunk from the file, then extract genes and cells using fancy indexing
vals = self.layers[layer][:, ix:ix + cols_per_chunk]
vals = vals[genes, :]
vals = vals[:, selection]
yield (ix, ix + selection, vals)
ix += cols_per_chunk
if axis == 0:
rows_per_chunk = batch_size
ix = 0
while ix < self.shape[0]:
rows_per_chunk = min(self.shape[0] - ix, rows_per_chunk)
selection = genes - ix
# Pick out the genes that are in this batch
selection = selection[np.where(np.logical_and(selection >= 0, selection < rows_per_chunk))[0]]
if selection.shape[0] == 0:
ix += rows_per_chunk
continue
# Load the whole chunk from the file, then extract genes and cells using fancy indexing
vals = self.layers[layer][ix:ix + rows_per_chunk, :]
vals = vals[selection, :]
vals = vals[:, cells]
yield (ix, ix + selection, vals)
ix += rows_per_chunk
def batch_scan_layers(self, cells: np.ndarray = None, genes: np.ndarray = None, axis: int = 0, batch_size: int = 1000, layers: Iterable = None) -> Iterable[Tuple[int, np.ndarray, Dict]]:
"""
**DEPRECATED** - Use `scan` instead
"""
deprecated("'batch_scan_layers' is deprecated. Use 'scan' instead")
if cells is None:
cells = np.fromiter(range(self.shape[1]), dtype='int')
if genes is None:
genes = np.fromiter(range(self.shape[0]), dtype='int')
if layers is None:
layers = self.layers.keys()
if axis == 1:
cols_per_chunk = batch_size
ix = 0
while ix < self.shape[1]:
cols_per_chunk = min(self.shape[1] - ix, cols_per_chunk)
selection = cells - ix
# Pick out the cells that are in this batch
selection = selection[np.where(np.logical_and(selection >= 0, selection < cols_per_chunk))[0]]
if selection.shape[0] == 0:
ix += cols_per_chunk
continue
# Load the whole chunk from the file, then extract genes and cells using fancy indexing
vals = dict()
for key in layers:
vals[key] = self.layers[key][:, ix:ix + cols_per_chunk]
vals[key] = vals[key][genes, :]
vals[key] = vals[key][:, selection]
yield (ix, ix + selection, vals)
ix += cols_per_chunk
if axis == 0:
rows_per_chunk = batch_size
ix = 0
while ix < self.shape[0]:
rows_per_chunk = min(self.shape[0] - ix, rows_per_chunk)
selection = genes - ix
# Pick out the genes that are in this batch
selection = selection[np.where(np.logical_and(selection >= 0, selection < rows_per_chunk))[0]]
if selection.shape[0] == 0:
ix += rows_per_chunk
continue
# Load the whole chunk from the file, then extract genes and cells using fancy indexing
vals = dict()
for key in layers:
vals[key] = self.layers[key][ix:ix + rows_per_chunk, :]
vals[key] = vals[key][selection, :]
vals[key] = vals[key][:, cells]
yield (ix, ix + selection, vals)
ix += rows_per_chunk
def map(self, f_list: List[Callable[[np.ndarray], int]], *, axis: int = 0, chunksize: int = 1000, selection: np.ndarray = None) -> List[np.ndarray]:
"""
Apply a function along an axis without loading the entire dataset in memory.
Args:
f: Function(s) that takes a numpy ndarray as argument
axis: Axis along which to apply the function (0 = rows, 1 = columns)
chunksize: Number of rows (columns) to load per chunk
selection: Columns (rows) to include
Returns:
numpy.ndarray result of function application
The result is a list of numpy arrays, one per supplied function in f_list.
This is more efficient than repeatedly calling map() one function at a time.
"""
return self.layers[""].map(f_list, axis, chunksize, selection)
def permute(self, ordering: np.ndarray, axis: int) -> None:
"""
Permute the dataset along the indicated axis.
Args:
ordering (list of int): The desired order along the axis
axis (int): The axis along which to permute
Returns:
Nothing.
"""
if self._file.__contains__("tiles"):
del self._file['tiles']
ordering = list(np.array(ordering).flatten()) # Flatten the ordering, in case we got a column vector
self.layers._permute(ordering, axis=axis)
if axis == 0:
self.row_attrs._permute(ordering)
self.row_graphs._permute(ordering)
if axis == 1:
self.col_attrs._permute(ordering)
self.col_graphs._permute(ordering)
def aggregate(self, out_file: str = None, select: np.ndarray = None, group_by: Union[str, np.ndarray] = "Clusters", aggr_by: str = "mean", aggr_ca_by: Dict[str, str] = None) -> np.ndarray:
"""
Aggregate the Loom file by applying aggregation functions to the main matrix as well as to the column attributes
Args:
out_file The name of the output Loom file (will be appended to if it exists)
select Bool array giving the columns to include (or None, to include all)
group_by The column attribute to group by, or an np.ndarray of integer group labels
aggr_by The aggregation function for the main matrix
aggr_ca_by A dictionary of aggregation functions for the column attributes (or None to skip)
Returns:
m Aggregated main matrix
Remarks:
aggr_by gives the aggregation function for the main matrix
aggr_ca_by is a dictionary with column attributes as keys and aggregation functionas as values
Aggregation functions can be any valid aggregation function from here: https://github.com/ml31415/numpy-groupies
In addition, you can specify:
"tally" to count the number of occurences of each value of a categorical attribute
"""
ca = {} # type: Dict[str, np.ndarray]
if select is not None:
raise ValueError("The 'select' argument is deprecated")
if isinstance(group_by, np.ndarray):
labels = group_by
else:
labels = (self.ca[group_by]).astype('int')
_, zero_strt_sort_noholes_lbls = np.unique(labels, return_inverse=True)
n_groups = len(set(labels))
if aggr_ca_by is not None:
for key in self.ca.keys():
if key not in aggr_ca_by:
continue
func = aggr_ca_by[key]
if func == "tally":
for val in set(self.ca[key]):
if np.issubdtype(type(val), np.str_):
valnew = val.replace("/", "-") # Slashes are not allowed in attribute names
valnew = valnew.replace(".", "_") # Nor are periods
else:
valnew = val
ca[key + "_" + str(valnew)] = npg.aggregate(zero_strt_sort_noholes_lbls, (self.ca[key] == val).astype('int'), func="sum", fill_value=0)
elif func == "mode":
def mode(x): # type: ignore
return scipy.stats.mode(x)[0][0]
ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=mode, fill_value=0).astype('str')
elif func == "mean":
ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=func, fill_value=0)
elif func == "first":
ca[key] = npg.aggregate(zero_strt_sort_noholes_lbls, self.ca[key], func=func, fill_value=self.ca[key][0])
m = np.empty((self.shape[0], n_groups))
for (_, selection, view) in self.scan(axis=0, layers=[""]):
vals_aggr = npg.aggregate(zero_strt_sort_noholes_lbls, view[:, :], func=aggr_by, axis=1, fill_value=0)
m[selection, :] = vals_aggr
if out_file is not None:
loompy.create(out_file, m, self.ra, ca)
return m
def export(self, out_file: str, layer: str = None, format: str = "tab") -> None:
"""
Export the specified layer and row/col attributes as tab-delimited file.
Args:
out_file: Path to the output file
layer: Name of the layer to export, or None to export the main matrix
format: Desired file format (only 'tab' is supported)
"""
if format != "tab":
raise NotImplementedError("Only 'tab' is supported")
with open(out_file, "w") as f:
# Emit column attributes
for ca in self.col_attrs.keys():
for ra in self.row_attrs.keys():
f.write("\t")
f.write(ca + "\t")
for v in self.col_attrs[ca]:
f.write(str(v) + "\t")
f.write("\n")
# Emit row attribute names
for ra in self.row_attrs.keys():
f.write(ra + "\t")
f.write("\t")
for v in range(self.shape[1]):
f.write("\t")
f.write("\n")
# Emit row attr values and matrix values
for row in range(self.shape[0]):
for ra in self.row_attrs.keys():
f.write(str(self.row_attrs[ra][row]) + "\t")
f.write("\t")
if layer is None:
for v in self[row, :]:
f.write(str(v) + "\t")
else:
for v in self.layers[layer][row, :]:
f.write(str(v) + "\t")
f.write("\n")
def create_append(filename: str, layers: Union[np.ndarray, Dict[str, np.ndarray], loompy.LayerManager], row_attrs: Dict[str, np.ndarray], col_attrs: Dict[str, np.ndarray], *, file_attrs: Dict[str, str] = None, fill_values: Dict[str, np.ndarray] = None) -> None:
"""
**DEPRECATED** - Use `new` instead; see https://github.com/linnarsson-lab/loompy/issues/42
"""
deprecated("'create_append' is deprecated. See https://github.com/linnarsson-lab/loompy/issues/42")
if os.path.exists(filename):
with connect(filename) as ds:
ds.add_columns(layers, col_attrs, fill_values=fill_values)
else:
create(filename, layers, row_attrs, col_attrs, file_attrs=file_attrs)
def new(filename: str, *, file_attrs: Optional[Dict[str, str]] = None) -> LoomConnection:
"""
Create an empty Loom file, and return it as a context manager.
"""
if filename.startswith("~/"):
filename = os.path.expanduser(filename)
if file_attrs is None:
file_attrs = {}
# Create the file (empty).
# Yes, this might cause an exception, which we prefer to send to the caller
f = h5py.File(name=filename, mode='w')
f.create_group('/attrs') # v3.0.0
f.create_group('/layers')
f.create_group('/row_attrs')
f.create_group('/col_attrs')
f.create_group('/row_graphs')
f.create_group('/col_graphs')
f.flush()
f.close()
ds = connect(filename, validate=False)
for vals in file_attrs:
if file_attrs[vals] is None:
ds.attrs[vals] = "None"
else:
ds.attrs[vals] = file_attrs[vals]
# store creation date
ds.attrs['CreationDate'] = timestamp()
ds.attrs["LOOM_SPEC_VERSION"] = loompy.loom_spec_version
return ds
def create(filename: str, layers: Union[np.ndarray, Dict[str, np.ndarray], loompy.LayerManager], row_attrs: Union[loompy.AttributeManager, Dict[str, np.ndarray]], col_attrs: Union[loompy.AttributeManager, Dict[str, np.ndarray]], *, file_attrs: Dict[str, str] = None) -> None:
"""
Create a new Loom file from the given data.
Args:
filename (str): The filename (typically using a ``.loom`` file extension)
layers: One of the following:
* Two-dimensional (N-by-M) numpy ndarray of float values
* Sparse matrix (e.g. :class:`scipy.sparse.csr_matrix`)
* Dictionary of named layers, each an N-by-M ndarray or sparse matrix
* A :class:`.LayerManager`, with each layer an N-by-M ndarray
row_attrs (dict): Row attributes, where keys are attribute names and values
are numpy arrays (float or string) of length N
col_attrs (dict): Column attributes, where keys are attribute names and
values are numpy arrays (float or string) of length M
file_attrs (dict): Global attributes, where keys are attribute names and
values are strings
Returns:
Nothing
Remarks:
If the file exists, it will be overwritten.
"""
if isinstance(row_attrs, loompy.AttributeManager):
row_attrs = {k: v[:] for k, v in row_attrs.items()}
if isinstance(col_attrs, loompy.AttributeManager):
col_attrs = {k: v[:] for k, v in col_attrs.items()}
if isinstance(layers, np.ndarray) or scipy.sparse.issparse(layers):
layers = {"": layers}
elif isinstance(layers, loompy.LayerManager):
layers = {k: v[:, :] for k, v in layers.items()}
if "" not in layers:
raise ValueError("Data for default layer must be provided")
# Sanity checks
shape = layers[""].shape # type: ignore
if shape[0] == 0 or shape[1] == 0:
raise ValueError("Main matrix cannot be empty")
for name, layer in layers.items():
if layer.shape != shape: # type: ignore
raise ValueError(f"Layer '{name}' is not the same shape as the main matrix")
for name, ra in row_attrs.items():
if len(ra) != shape[0]:
raise ValueError(f"Row attribute '{name}' is not the same length ({len(ra)}) as number of rows in main matrix ({shape[0]})")
for name, ca in col_attrs.items():
if len(ca) != shape[1]:
raise ValueError(f"Column attribute '{name}' is not the same length ({len(ca)}) as number of columns in main matrix ({shape[1]})")
try:
with new(filename, file_attrs=file_attrs) as ds:
ds.layer[""] = layers[""]
for key, vals in layers.items():
if key == "":
continue
ds.layer[key] = vals
for key, vals in row_attrs.items():
ds.ra[key] = vals
for key, vals in col_attrs.items():
ds.ca[key] = vals
except ValueError as ve:
if os.path.exists(filename):
os.remove(filename)
raise ve
def create_from_cellranger(indir: str, outdir: str = None, genome: str = None) -> str:
"""
Create a .loom file from 10X Genomics cellranger output
Args:
indir (str): path to the cellranger output folder (the one that contains 'outs')
outdir (str): output folder wher the new loom file should be saved (default to indir)
genome (str): genome build to load (e.g. 'mm10'; if None, determine species from outs folder)
Returns:
path (str): Full path to the created loom file.
Remarks:
The resulting file will be named ``{sampleID}.loom``, where the sampleID is the one given by cellranger.
"""
if outdir is None:
outdir = indir
sampleid = os.path.split(os.path.abspath(indir))[-1]
matrix_folder = os.path.join(indir, 'outs', 'filtered_gene_bc_matrices')
if os.path.exists(matrix_folder):
if genome is None:
genome = [f for f in os.listdir(matrix_folder) if not f.startswith(".")][0]
matrix_folder = os.path.join(matrix_folder, genome)
matrix = mmread(os.path.join(matrix_folder, "matrix.mtx")).todense()
genelines = open(os.path.join(matrix_folder, "genes.tsv"), "r").readlines()
bclines = open(os.path.join(matrix_folder, "barcodes.tsv"), "r").readlines()
else: # cellranger V3 file locations
if genome is None:
genome = "" # Genome is not visible from V3 folder
matrix_folder = os.path.join(indir, 'outs', 'filtered_feature_bc_matrix')
matrix = mmread(os.path.join(matrix_folder, "matrix.mtx.gz")).todense()
genelines = [l.decode() for l in gzip.open(os.path.join(matrix_folder, "features.tsv.gz"), "r").readlines()]
bclines = [l.decode() for l in gzip.open(os.path.join(matrix_folder, "barcodes.tsv.gz"), "r").readlines()]
accession = np.array([x.split("\t")[0] for x in genelines]).astype("str")
gene = np.array([x.split("\t")[1].strip() for x in genelines]).astype("str")
cellids = np.array([sampleid + ":" + x.strip() for x in bclines]).astype("str")
col_attrs = {"CellID": cellids}
row_attrs = {"Accession": accession, "Gene": gene}
tsne_file = os.path.join(indir, "outs", "analysis", "tsne", "projection.csv")
# In cellranger V2 the file moved one level deeper
if not os.path.exists(tsne_file):
tsne_file = os.path.join(indir, "outs", "analysis", "tsne", "2_components", "projection.csv")
if os.path.exists(tsne_file):
tsne = np.loadtxt(tsne_file, usecols=(1, 2), delimiter=',', skiprows=1)
col_attrs["X"] = tsne[:, 0].astype('float32')
col_attrs["Y"] = tsne[:, 1].astype('float32')
clusters_file = os.path.join(indir, "outs", "analysis", "clustering", "graphclust", "clusters.csv")
if os.path.exists(clusters_file):
labels = np.loadtxt(clusters_file, usecols=(1, ), delimiter=',', skiprows=1)
col_attrs["ClusterID"] = labels.astype('int') - 1
path = os.path.join(outdir, sampleid + ".loom")
create(path, matrix, row_attrs, col_attrs, file_attrs={"Genome": genome})
return path
def create_from_matrix_market(out_file: str, sample_id: str, layer_paths: Dict[str, str], row_metadata_path: str, column_metadata_path: str, delim: str = "\t", skip_row_headers: bool = False, skip_colums_headers: bool = False, file_attrs: Dict[str, str] = None, matrix_transposed: bool = False) -> None:
"""
Create a .loom file from .mtx matrix market format
Args:
out_file: path to the newly created .loom file (will be overwritten if it exists)
sample_id: string to use as prefix for cell IDs
layer_paths: dict mapping layer names to paths to the corresponding matrix file (usually with .mtx extension)
row_metadata_path: path to the row (usually genes) metadata file
column_metadata_path: path to the column (usually cells) metadata file
delim: delimiter used for metadata (default: "\t")
skip_row_headers: if true, skip first line in rows metadata file
skip_column_headers: if true, skip first line in columns metadata file
file_attrs: dict of global file attributes, or None
matrix_transposed: if true, the main matrix is transposed
Remarks:
layer_paths should typically map the empty string to a matrix market file: {"": "path/to/filename.mtx"}.
To create a multilayer loom file, map multiple named layers {"": "path/to/layer1.mtx", "layer2": "path/to/layer2.mtx"}
Note: the created file MUST have a main layer named "". If no such layer is given, BUT all given layers are the same
datatype, then a main layer will be created as the sum of the other layers. For example, {"spliced": "spliced.mtx", "unspliced": "unspliced.mtx"}
will create three layers, "", "spliced", and "unspliced", where "" is the sum of the other two.
"""
layers: Dict[str, Union[np.ndarray, scipy.sparse.coo_matrix]] = {}
for name, path in layer_paths.items():
matrix = mmread(path)
if matrix_transposed:
matrix = matrix.T
layers[name] = matrix
if "" not in layers:
main_matrix = None
for name, matrix in layers.items():
if main_matrix is None:
main_matrix = matrix.copy()
else:
main_matrix = main_matrix + matrix
layers[""] = main_matrix
genelines = open(row_metadata_path, "r").readlines()
bclines = open(column_metadata_path, "r").readlines()
accession = np.array([x.split("\t")[0] for x in genelines]).astype("str")
if(len(genelines[0].split("\t")) > 1):
gene = np.array([x.split("\t")[1].strip() for x in genelines]).astype("str")
row_attrs = {"Accession": accession, "Gene": gene}
else:
row_attrs = {"Accession": accession}
cellids = np.array([sample_id + ":" + x.strip() for x in bclines]).astype("str")
col_attrs = {"CellID": cellids}
create(out_file, layers[""], row_attrs, col_attrs, file_attrs=file_attrs)
if len(layers) > 1:
with loompy.connect(out_file) as ds:
for name, layer in layers.items():
if name == "":
continue
ds[name] = layer
def create_from_star(indir : str, outfile : str, sample_id : str, \
cell_filter : str = "star", expected_n_cells : int = 0, min_total_umis : int = 0, ambient_pthreshold : float = 1.0, \
sample_metadata_file : str = None, gtf_file : str = None, main_layer : str = "velosum", extra_layers = None):
"""
Create a .loom file from STARsolo output
Args:
indir (str): path to STARsolo output folder (the one that contains 'Solo.out')
outfile (str): path and name of the new loom file
sample_id (str): sample_id (typically 10Xxxx_x)
cell_filter (str): 'emptydrops', 'star', 'none', 'combine', 'Gene', 'GeneFull', 'GeneFull_ExonOverIntron', 'GeneFull_Ex50pAS'
emptydrops: with parameters expected_n_cells, min_total_umis, and ambient_pthreshold
star: uses the barcodes from 'Solo.out/Velocyto/filtered' subdir of indir (Same as 'Gene')
combine: combines cells from all extra_layers and fills layer's non-valid cells with zeroes
Gene... : uses the cells from that Solo.out filtered subdir. Will be added to extra_layers.
none: all cells are kept - Lots of cells!
sample_metadata_file (str): file of sample metadata or path to sqlite3 database. Used for gene annotation.
gtf_file (str): path to gtf file used by STARsolo. Used for cell annotations.
main_layer(str): The STAR output matrix to use for the main loom layer (e.g. 'Gene', or 'GeneFull').
'velosum' adds up spliced, unspliced, and ambiguous.
extra_layers(list): Names of additional layers to add in data (e.g. 'GeneFull').
Returns:
nothing
"""
gtypes = extra_layers if extra_layers else []
if cell_filter in ("Gene", "GeneFull", "GeneFull_ExonOverIntron", "GeneFull_Ex50pAS") and cell_filter not in gtypes:
gtypes.append(cell_filter)
if main_layer in ("Gene", "GeneFull", "GeneFull_ExonOverIntron", "GeneFull_Ex50pAS") and main_layer not in gtypes:
gtypes.append(main_layer)
subdir = "raw" if cell_filter == "none" else "filtered"
velodir = os.path.join(indir, "Solo.out", "Velocyto", subdir)
accessions = [ l.split('\t')[0] for l in open(os.path.join(velodir, "features.tsv")).readlines() ]
genes = [ l.split('\t')[1] for l in open(os.path.join(velodir, "features.tsv")).readlines() ]
gtype2bcs = {}
n_genes = len(accessions)
layers = {}
for gtype in gtypes:
mtxpath = os.path.join(indir, "Solo.out", gtype, subdir, "matrix.mtx")
bcspath = os.path.join(indir, "Solo.out", gtype, subdir, "barcodes.tsv")
if os.path.exists(mtxpath) and os.path.exists(bcspath):
bcs = [ l.rstrip() for l in open(bcspath).readlines() ]
gtype2bcs[gtype] = bcs
mtx = np.loadtxt(mtxpath, skiprows=3, delimiter=' ')
layers[gtype] = sparse.csc_matrix((mtx[:,2], (mtx[:,0]-1, mtx[:,1]-1)), shape = (n_genes, len(bcs))).todense()
velobcspath = os.path.join(velodir, "barcodes.tsv")
velobcs = [ l.rstrip() for l in open(velobcspath).readlines() ]
gtype2bcs['spliced'] = gtype2bcs['unspliced'] = gtype2bcs['ambiguous'] = velobcs
velomtxshape = (n_genes, len(velobcs))
common_mtx = os.path.join(velodir, "matrix.mtx")
if os.path.exists(common_mtx):
mtx = np.loadtxt(common_mtx, skiprows=3, delimiter=' ')
layers['spliced'] = allspliced = sparse.csc_matrix((mtx[:,2], (mtx[:,0]-1, mtx[:,1]-1)), shape = velomtxshape).todense()
layers['unspliced'] = sparse.csc_matrix((mtx[:,3], (mtx[:,0]-1, mtx[:,1]-1)), shape = velomtxshape).todense()
layers['ambiguous'] = sparse.csc_matrix((mtx[:,4], (mtx[:,0]-1, mtx[:,1]-1)), shape = velomtxshape).todense()
else: # STAR >= 2.7.9
for vtype in ('spliced', 'unspliced', 'ambiguous'):
mtx = np.loadtxt(os.path.join(velodir, vtype + ".mtx"), skiprows=3, delimiter=' ')
layers[vtype] = sparse.csc_matrix((mtx[:,2], (mtx[:,0]-1, mtx[:,1]-1)), shape = velomtxshape).todense()
if cell_filter == "emptydrops":
allspliced = layers['spliced']
spliced_total_umis = np.array(allspliced.sum(axis=0))[0]
ambient_umis, ambient_pvalue = call_cells(allspliced.tocsc(), expected_n_cells)
valid_cell_idxs = (ambient_pvalue <= ambient_pthreshold) | (spliced_total_umis >= min_total_umis)
valid_pvalue = ambient_pvalue[valid_cell_idxs]
valid_bcs = gtype2bcs['spliced'][valid_cell_idxs]
elif cell_filter == "combine":
all_bcs = set()
for bcs in gtype2bcs.values():
all_bcs.update(bcs)
valid_bcs = all_bcs
elif cell_filter in gtypes:
valid_bcs = gtype2bcs[cell_filter]
elif cell_filter !="none":
if cell_filter != "star":
print (f"Unknown cell_filter type: {cell_filter} - using cells from Solo.out/Velocyto/filtered/")
valid_bcs = velobcs # gtype2bcs["Gene"]
valid_bcs = list(valid_bcs)
n_valid_cells = len(valid_bcs)
new_shape = (n_genes, n_valid_cells)
cellids = np.array([f"{sample_id}:{v_bc}" for v_bc in valid_bcs])
ca = { "CellID": cellids }
for gtype in layers:
valid_cells_layer = np.full(new_shape, 0, layers[gtype].dtype)
ca_valid = np.full(n_valid_cells, 0)
#print (valid_cells_layer.shape, layers[gtype].shape)
for fromidx, bc in enumerate(gtype2bcs[gtype]):
try:
toidx = valid_bcs.index(bc)
#print (fromidx, toidx, bc, layers[gtype].shape, valid_cells_layer.shape)
valid_cells_layer[:,toidx] = layers[gtype][:,fromidx].reshape(n_genes,)
ca_valid[toidx] = 1
except ValueError:
pass #print ("Err:", fromidx, bc, len(valid_bcs))
layers[gtype] = valid_cells_layer
#print (gtype, valid_cells_layer.shape, valid_cells_layer.sum())
ca["Valid_" + gtype] = ca_valid
#print ("ca", gtype, ca_valid.shape)
if main_layer == "velosum":
layers[''] = layers['spliced'] + layers['unspliced'] + layers['ambiguous']
else:
layers[''] = layers[main_layer]
del layers[main_layer]
total_umis = layers[''].sum(axis=0)
ca["BarcodeTotalUMIs"] = total_umis
if cell_filter == "emptydrops":
ca["AmbientPValue"] = valid_pvalue
ca["AmbientUMIs"] = np.full(n_valid_cells, ambient_umis)
if sample_metadata_file:
sample_metadata = load_sample_metadata(sample_metadata_file, sample_id)
for key, value in sample_metadata.items():
ca[key] = np.full(n_valid_cells, value)
if gtf_file:
ra = make_row_attrs_from_gene_metadata(gtf_file, accessions)
else:
ra = { "Gene": np.array(genes), "Accession": np.array(accessions) }
create(filename=outfile, layers=layers, row_attrs=ra, col_attrs=ca)
def create_from_kallistobus(out_file: str, in_dir: str, tr2g_file: str, whitelist_file: str, file_attrs: Dict[str, str] = None, layers: Dict[str, str] = None):
"""
Create a loom file from a kallisto-bus output folder.
Args:
out_file Full path to the loom file to be created
in_dir Full path to the kallisto-bus directory (containing output.bus, matrix.ec and transcripts.txt)
whitelist_file Full path to the barcode whitelist file (e.g. 10xv2_whitelist.txt)
file_attrs Optional dictionary of global attributes
layers Dict of {layer_name: capture_file_path} to define extra layers
"""
pass
# def import(file: str, key: str)
# def demote()
def combine(files: List[str], output_file: str, key: str = None, file_attrs: Dict[str, str] = None, batch_size: int = 1000, convert_attrs: bool = False) -> None:
"""
Combine two or more loom files and save as a new loom file
Args:
files (list of str): the list of input files (full paths)
output_file (str): full path of the output loom file
key (string): Row attribute to use to verify row ordering
file_attrs (dict): file attributes (title, description, url, etc.)
batch_size (int): limits the batch or cols/rows read in memory (default: 1000)
convert_attrs (bool): convert file attributes that differ between files into column attributes
Returns:
Nothing, but creates a new loom file combining the input files.
Note that the loom files must have exactly the same
number of rows, and must have exactly the same column attributes.
Named layers not present in the first file are discarded.
.. warning::
If you don't give a ``key`` argument, the files will be combined without changing
the ordering of rows or columns. Row attributes will be taken from the first file.
Hence, if rows are not in the same order in all files, the result may be meaningless.
To guard against this issue, you are strongly advised to provide a ``key`` argument,
which is used to sort files while merging. The ``key`` should be the name of a row
attribute that contains a unique value for each row. For example, to order rows by
the attribute ``Accession``:
.. highlight:: python
.. code-block:: python
import loompy
loompy.combine(files, key="Accession")
"""
if file_attrs is None:
file_attrs = {}
if len(files) == 0:
raise ValueError("The input file list was empty")
copyfile(files[0], output_file)
ds = connect(output_file)
for a in file_attrs:
ds.attrs[a] = file_attrs[a]
if len(files) >= 2:
for f in files[1:]:
ds.add_loom(f, key, batch_size=batch_size, convert_attrs=convert_attrs)
ds.close()
def combine_faster(files: List[str], output_file: str, file_attrs: Dict[str, str] = None, selections: List[np.ndarray] = None, key: str = None, skip_attrs: List[str] = None) -> None:
"""
Combine loom files and save as a new loom file
Args:
files (list of str): the list of input files (full paths)
output_file (str): full path of the output loom file
file_attrs (dict): file attributes (title, description, url, etc.)
selections: list of indicator arrays (one per file; or None to include all cells for the file) determining which columns to include from each file, or None to include all cells from all files
key: row attribute to use as key for ordering the rows, or None to skip ordering
skip_attrs: list of column attributes that should not be included in the output
Returns:
Nothing, but creates a new loom file combining the input files.
Note that the loom files must have exactly the same
number of rows, in exactly the same order, and must have exactly the same column attributes.
Values in layers missing from one or more files will be replaced by zeros
.. warning::
The files will be combined without changing
the ordering of rows or columns. Row attributes will be taken from the first file.
Hence, if rows are not in the same order in all files, the result may be meaningless.
Remarks:
This version assumes that the individual files will fit in memory. If you run out of memory, try the standard combine() method.
"""
if file_attrs is None:
file_attrs = {}
if skip_attrs is None:
skip_attrs = []
if len(files) == 0:
raise ValueError("The input file list was empty")
if selections is None:
selections = [None for _ in files] # None means take all cells from the file
n_cells = 0
n_genes = 0
for f, s in zip(files, selections):
with loompy.connect(f, "r") as ds:
if n_genes == 0:
n_genes = ds.shape[0]
elif n_genes != ds.shape[0]:
raise ValueError(f"All files must have exactly the same number of rows, but {f} had {ds.shape[0]} rows while previous files had {n_genes}")
if s is None:
n_cells += ds.shape[1]
else:
n_cells += s.sum()
col_attrs: Dict[str, np.ndarray] = {}
ix = 0
with loompy.new(output_file, file_attrs=file_attrs) as dsout:
for f, s in zip(files, selections):
with loompy.connect(f, "r") as ds:
if key is not None:
ordering = np.argsort(ds.ra[key])
dsout.shape = (ds.shape[0], n_cells) # Not really necessary to set this for each file, but no harm either; needed in order to make sure the first layer added will be the right shape
n_selected = s.sum() if s is not None else ds.shape[1]
j = 0
batch_size = 500_000_000 // ds.shape[0] // 4
for (_, _, view) in ds.scan(items=s, axis=1, key=key, what=["layers"], batch_size=batch_size):
logging.debug(j)
for layer in ds.layers.keys():
# Create the layer if it doesn't exist
if layer not in dsout.layers:
dsout[layer] = ds[layer].dtype.name
# Make sure the dtype didn't change between files
if dsout.layers[layer].dtype != ds[layer].dtype:
raise ValueError(f"Each layer must be same datatype in all files, but {layer} of type {ds[layer].dtype} in {f} differs from previous files where it was {dsout[layer].dtype}")
dsout[layer][:, ix + j: ix + j + view.shape[1]] = view[layer][:, :]
j += view.shape[1]
for attr, vals in ds.ca.items():
if attr in skip_attrs:
continue
if attr in col_attrs:
if col_attrs[attr].dtype != vals.dtype:
raise ValueError(f"Each column attribute must be same datatype in all files, but {attr} is {vals.dtype} in {f} but was {col_attrs[attr].dtype} in previous files")
else:
shape = list(vals.shape)
shape[0] = n_cells
col_attrs[attr] = np.zeros(shape, dtype=vals.dtype)
col_attrs[attr][ix: ix + n_selected] = vals[s]
for attr, vals in ds.ra.items():
if attr not in dsout.ra:
if key is None:
dsout.ra[attr] = vals
else:
dsout.ra[attr] = vals[ordering]
ix = ix + n_selected
for attr, vals in col_attrs.items():
dsout.ca[attr] = vals
def connect(filename: str, mode: str = 'r+', *, validate: bool = True, spec_version: str = "3.0.0") -> LoomConnection:
"""
Establish a connection to a .loom file.
Args:
filename: Path to the Loom file to open
mode: Read/write mode, 'r+' (read/write) or 'r' (read-only), defaults to 'r+'
validate: Validate the file structure against the Loom file format specification
spec_version: The loom file spec version to validate against (e.g. "2.0.1" or "old")
Returns:
A LoomConnection instance.
Remarks:
This function should typically be used as a context manager (i.e. inside a ``with``-block):
.. highlight:: python
.. code-block:: python
import loompy
with loompy.connect("mydata.loom") as ds:
print(ds.ca.keys())
This ensures that the file will be closed automatically when the context block ends
Note: if validation is requested, an exception is raised if validation fails.
"""
return LoomConnection(filename, mode, validate=validate)
|