File: index.rst

package info (click to toggle)
python-loompy 3.0.7%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,316 kB
  • sloc: python: 3,152; sh: 63; makefile: 16
file content (117 lines) | stat: -rw-r--r-- 6,894 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
.. _installation:


Installation
============

Requirements
------------

Loompy requires Python 3.6 or later. We recommend using `Anaconda Python <https://www.anaconda.com/download/>`_,
which can be installed in minutes, comes with all packages needed for scientific computing, and installs locally
in your home directory so you don't have to mess with your system's Python.

.. tip::
    On Linux, many distributions already come with Python 3.6 or later. To find out which version you have,
    and how to upgrade if necessary, please use `this guide <https://docs.python-guide.org/starting/install3/linux/>`_. 

    If you absolutely need to use an older Python, see below for how to install from source.
    

Easy installation
-----------------

Install the loompy package from PyPi with:

::

    pip install -U loompy


.. tip::
    The package is updated often (don't worry, the format is stable;
    even in the rare occasion that you need to update your code, your old
    loom files won't break). To ensure that you have the latest version, run
    ``pip install -U loompy`` again.


From source
-----------

Alternatively, you can install the latest version from source:

::

    git clone https://github.com/linnarsson-lab/loompy.git
    python setup.py install

If you just want to work with loom files within Python code, you should
be all set! We also made a web-app to make it easier to browse the data,
which you can install for local viewing, or set up for sharing loom
files from your own website. See the loom-viewer `repository <https://github.com/linnarsson-lab/loom-viewer/>`_ for more information.

If you need to use an older Python, `py-backwards <https://github.com/nvbn/py-backwards>`_ can be used 
to backport loompy to at least Python 3.5. The following works, and creates a Python 3.5-compatible loompy:

.. code:: bash

    cd ~/code/loompy  # the loompy repository
    git checkout 0f5c934679822c7babb020928516b9c7e01c3f7e  # Checkout loompy that will work with 3.5
    pip install py-backwards
    cd ~/code  # (the directory where loompy resides)
    cp -R loompy loompy-3.5  # Make a copy of the repo
    cd loompy-3.5/loompy
    for f in *.py; do py-backwards -i $f -o $f -t 3.5; done  # backport to Python 3.5
    cd ..
    py-backwards -i setup.py -o setup.py -t 3.5  # backport the setup script too
    python setup.py install

.. warning::

    Currently, a bug in py-backwards prevents the above from working properly for the
    most recent versions of loompy. For that reason, the above script will check out an
    older version that will convert to 3.5 without error. See https://github.com/nvbn/py-backwards/issues/48

.. _gettingstarted:

Getting Started
---------------

Go to http://loom.linnarssonlab.org and download one of the datasets. We will use ``cortex.loom`` below.

Run the following in a Jupyter notebook:

.. code:: python

    >>> import loompy
    >>> ds = loompy.connect("cortex.loom")
    >>> ds

This shows the upper-left 10x10 corner of the matrix along with its
attributes:

.. raw:: html

    <p>(18539, 1715)</p><table><tbody><tr><td>&nbsp;</td><td><strong>Cell_type</strong></td><td>eNb1</td><td>eNb1</td><td>eNb1</td><td>eNb1</td><td>eNb1</td><td>eNb1</td><td>eNb1</td><td>eNb1</td><td>eNb1</td><td>eNb1</td><td>...</td></tr><tr><td>&nbsp;</td><td><strong>Cell_ID</strong></td><td>1772122_301_C02</td><td>1772122_180_E05</td><td>1772122_300_H02</td><td>1772122_180_B09</td><td>1772122_180_G04</td><td>1772122_182_E09</td><td>1772122_302_C04</td><td>1772122_302_D11</td><td>1772122_180_C11</td><td>1772122_298_A07</td><td>...</td></tr><tr><td>&nbsp;</td><td><strong>Timepoint</strong></td><td>day_35</td><td>day_35</td><td>day_35</td><td>day_35</td><td>day_35</td><td>day_35</td><td>day_35</td><td>day_35</td><td>day_35</td><td>day_35</td><td>...</td></tr><tr><td><strong>Gene</strong></td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>...</td></tr><tr><td>DDX11L1</td><td>&nbsp;</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>...</td></tr><tr><td>WASH7P_p1</td><td>&nbsp;</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>...</td></tr><tr><td>LINC01002_loc4</td><td>&nbsp;</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>...</td></tr><tr><td>LOC100133331_loc1</td><td>&nbsp;</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>...</td></tr><tr><td>LOC100132287_loc2</td><td>&nbsp;</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>...</td></tr><tr><td>LOC101928626</td><td>&nbsp;</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>...</td></tr><tr><td>MIR6723</td><td>&nbsp;</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>...</td></tr><tr><td>LOC100133331_loc2</td><td>&nbsp;</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>...</td></tr><tr><td>LOC100288069_p1</td><td>&nbsp;</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>...</td></tr><tr><td>FAM87B</td><td>&nbsp;</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>...</td></tr><tr><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td><td>...</td></tr></tbody></table><br>


In this example, the total size of the dataset is 18539 rows (genes) by
1715 columns (cells). There are three column attributes (``Cell_type``,
``Cell_ID`` and ``Timepoint``) and one row attribute (``Gene``).

Next, try this:

.. code:: python

    ds[ds.ra.Gene == "Actb", :]

This returns an array of the expression values for *Actb*. Note the use
of ``ds.ra.Gene == ...`` to pick out rows that match some
criterion, and the use of ds[..., ...] to select subsets of the data. In
this example, ``ds.ca.Gene == "Actb"`` is used as the row selector to pick
out the single row corresponding to *Actb*, and ``:`` is used to select
all columns. Hence, the expression returns the expression values for
*Actb* in every cell in the dataset.

Refer to the :ref:`API Walktrough <apiwalkthrough>` and the :ref:`API Documentation <fullapi>`  to learn more about creating and
manipulating loom files.