1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
# Original algorithm was published by John Marioni and colleagues as EmptyDrops (Lun, A. et al. Distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data.)
# This implementation is based on the code in cellranger v3.0 by 10x Genomics
# Copyright 2018 10X Genomics, Inc.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import logging
import numpy as np
import scipy.sparse as sparse
import scipy.stats as sp_stats
# Simple Good-Turing estimator.
# Based on S implementation in
# William A. Gale & Geoffrey Sampson (1995) Good-turing frequency estimation without tears,
# Journal of Quantitative Linguistics, 2:3, 217-237, DOI: 10.1080/09296179508590051
class SimpleGoodTuringError(Exception):
pass
def _averaging_transform(r, nr):
d = np.concatenate((np.ones(1, dtype=int), np.diff(r)))
dr = np.concatenate((
0.5 * (d[1:] + d[0:-1]),
np.array((d[-1],), dtype=float),
))
return nr.astype(float) / dr
def _rstest(r, coef):
return r * np.power(1 + 1 / r, 1 + coef)
def simple_good_turing(xr, xnr):
"""Make a Simple Good-Turing estimate of the frequencies.
Args:
xr (np.array(int)): Non-zero item frequencies
xnr (np.array(int)): Non-zero frequencies of frequencies
Returns:
(rstar (np.array(float)), p0 (float)):
rstar: The adjusted non-zero frequencies
p0: The total probability of unobserved items
"""
xr = xr.astype(float)
xnr = xnr.astype(float)
xN = np.sum(xr * xnr)
# Get Linear Good-Turing estimate
xnrz = _averaging_transform(xr, xnr)
slope, intercept, _, _, _ = sp_stats.linregress(np.log(xr), np.log(xnrz))
if slope > -1:
raise SimpleGoodTuringError("The log-log slope is > -1 (%d); the SGT estimator is not applicable to these data." % slope)
xrst = _rstest(xr, slope)
xrstrel = xrst / xr
# Get traditional Good-Turing estimate
xrtry = xr == np.concatenate((xr[1:] - 1, np.zeros(1)))
xrstarel = np.zeros(len(xr))
xrstarel[xrtry] = (xr[xrtry] + 1) / xr[xrtry] * np.concatenate((xnr[1:], np.zeros(1)))[xrtry] / xnr[xrtry]
# Determine when to switch from GT to LGT estimates
tursd = np.ones(len(xr))
for i in range(len(xr)):
if xrtry[i]:
tursd[i] = float(i + 2) / xnr[i] * np.sqrt(xnr[i + 1] * (1 + xnr[i + 1] / xnr[i]))
xrstcmbrel = np.zeros(len(xr))
useturing = True
for r in range(len(xr)):
if not useturing:
xrstcmbrel[r] = xrstrel[r]
else:
if np.abs(xrstrel[r] - xrstarel[r]) * (1 + r) / tursd[r] > 1.65:
xrstcmbrel[r] = xrstarel[r]
else:
useturing = False
xrstcmbrel[r] = xrstrel[r]
# Renormalize the probabilities for observed objects
sumpraw = np.sum(xrstcmbrel * xr * xnr / xN)
xrstcmbrel = xrstcmbrel * (1 - xnr[0] / xN) / sumpraw
p0 = xnr[0] / xN
return (xr * xrstcmbrel, p0)
def sgt_proportions(frequencies):
"""Use Simple Good-Turing estimate to adjust for unobserved items
Args:
frequencies (np.array(int)): Nonzero frequencies of items
Returns:
(pstar (np.array(float)), p0 (float)):
pstar: The adjusted non-zero proportions
p0: The total probability of unobserved items
"""
if len(frequencies) == 0:
raise ValueError("Input frequency vector is empty")
if np.count_nonzero(frequencies) != len(frequencies):
raise ValueError("Frequencies must be greater than zero")
freqfreqs = np.bincount(frequencies.astype(np.int64))
assert freqfreqs[0] == 0
use_freqs = np.flatnonzero(freqfreqs)
if len(use_freqs) < 10:
raise SimpleGoodTuringError("Too few non-zero frequency items (%d). Aborting SGT." % len(use_freqs))
rstar, p0 = simple_good_turing(use_freqs, freqfreqs[use_freqs])
# rstar contains the smoothed frequencies.
# Map each original frequency r to its smoothed rstar.
rstar_dict = dict(zip(use_freqs, rstar))
rstar_sum = np.sum(freqfreqs[use_freqs] * rstar)
rstar_i = np.fromiter((rstar_dict[f] for f in frequencies), dtype=float, count=len(frequencies))
pstar = (1 - p0) * (rstar_i / rstar_sum)
assert np.isclose(p0 + np.sum(pstar), 1)
return (pstar, p0)
def adjust_pvalue_bh(p):
""" Multiple testing correction of p-values using the Benjamini-Hochberg procedure """
descending = np.argsort(p)[::-1]
# q = p * N / k where p = p-value, N = # tests, k = p-value rank
scale = float(len(p)) / np.arange(len(p), 0, -1)
q = np.minimum(1, np.minimum.accumulate(scale * p[descending]))
# Return to original order
return q[np.argsort(descending)]
def eval_multinomial_loglikelihoods(matrix, profile_p, max_mem_gb=0.1):
"""Compute the multinomial log PMF for many barcodes
Args:
matrix (scipy.sparse.csc_matrix): Matrix of UMI counts (feature x barcode)
profile_p (np.ndarray(float)): Multinomial probability vector
max_mem_gb (float): Try to bound memory usage.
Returns:
log_likelihoods (np.ndarray(float)): Log-likelihood for each barcode
"""
gb_per_bc = float(matrix.shape[0] * matrix.dtype.itemsize) / (1024**3)
bcs_per_chunk = max(1, int(round(max_mem_gb / gb_per_bc)))
num_bcs = matrix.shape[1]
loglk = np.zeros(num_bcs)
for chunk_start in range(0, num_bcs, bcs_per_chunk):
chunk = slice(chunk_start, chunk_start + bcs_per_chunk)
matrix_chunk = matrix[:, chunk].transpose().toarray()
n = matrix_chunk.sum(1)
loglk[chunk] = sp_stats.multinomial.logpmf(matrix_chunk, n, p=profile_p)
return loglk
def simulate_multinomial_loglikelihoods(profile_p, umis_per_bc, num_sims=1000, jump=1000, n_sample_feature_block=1000000, verbose=False):
"""Simulate draws from a multinomial distribution for various values of N.
Uses the approximation from Lun et al. ( https://www.biorxiv.org/content/biorxiv/early/2018/04/04/234872.full.pdf )
Args:
profile_p (np.ndarray(float)): Probability of observing each feature.
umis_per_bc (np.ndarray(int)): UMI counts per barcode (multinomial N).
num_sims (int): Number of simulations per distinct N value.
jump (int): Vectorize the sampling if the gap between two distinct Ns exceeds this.
n_sample_feature_block (int): Vectorize this many feature samplings at a time.
Returns:
(distinct_ns (np.ndarray(int)), log_likelihoods (np.ndarray(float)):
distinct_ns is an array containing the distinct N values that were simulated.
log_likelihoods is a len(distinct_ns) x num_sims matrix containing the
simulated log likelihoods.
"""
distinct_n = np.flatnonzero(np.bincount(umis_per_bc.astype(np.int64)))
loglk = np.zeros((len(distinct_n), num_sims), dtype=float)
sampled_features = np.random.choice(len(profile_p), size=n_sample_feature_block, p=profile_p, replace=True)
k = 0
log_profile_p = np.log(profile_p)
for sim_idx in range(num_sims):
curr_counts = np.ravel(sp_stats.multinomial.rvs(distinct_n[0], profile_p, size=1))
curr_loglk = sp_stats.multinomial.logpmf(curr_counts, distinct_n[0], p=profile_p)
loglk[0, sim_idx] = curr_loglk
for i in range(1, len(distinct_n)):
step = distinct_n[i] - distinct_n[i - 1]
if step >= jump:
# Instead of iterating for each n, sample the intermediate ns all at once
curr_counts += np.ravel(sp_stats.multinomial.rvs(step, profile_p, size=1))
curr_loglk = sp_stats.multinomial.logpmf(curr_counts, distinct_n[i], p=profile_p)
assert not np.isnan(curr_loglk)
else:
# Iteratively sample between the two distinct values of n
for n in range(distinct_n[i - 1] + 1, distinct_n[i] + 1):
j = sampled_features[k]
k += 1
if k >= n_sample_feature_block:
# Amortize this operation
sampled_features = np.random.choice(len(profile_p), size=n_sample_feature_block, p=profile_p, replace=True)
k = 0
curr_counts[j] += 1
curr_loglk += log_profile_p[j] + np.log(float(n) / curr_counts[j])
loglk[i, sim_idx] = curr_loglk
return distinct_n, loglk
def compute_ambient_pvalues(umis_per_bc, obs_loglk, sim_n, sim_loglk):
"""Compute p-values for observed multinomial log-likelihoods
Args:
umis_per_bc (nd.array(int)): UMI counts per barcode
obs_loglk (nd.array(float)): Observed log-likelihoods of each barcode deriving from an ambient profile
sim_n (nd.array(int)): Multinomial N for simulated log-likelihoods
sim_loglk (nd.array(float)): Simulated log-likelihoods of shape (len(sim_n), num_simulations)
Returns:
pvalues (nd.array(float)): p-values
"""
assert len(umis_per_bc) == len(obs_loglk)
assert sim_loglk.shape[0] == len(sim_n)
# Find the index of the simulated N for each barcode
sim_n_idx = np.searchsorted(sim_n, umis_per_bc)
num_sims = sim_loglk.shape[1]
num_barcodes = len(umis_per_bc)
pvalues = np.zeros(num_barcodes)
for i in range(num_barcodes):
num_lower_loglk = np.sum(sim_loglk[sim_n_idx[i], :] < obs_loglk[i])
pvalues[i] = float(1 + num_lower_loglk) / (1 + num_sims)
return pvalues
def estimate_profile_sgt(matrix, barcode_indices, nz_feat):
""" Estimate a gene expression profile by Simple Good Turing.
Args:
raw_mat (sparse matrix): Sparse matrix of all counts
barcode_indices (np.array(int)): Barcode indices to use
nz_feat (np.array(int)): Indices of features that are non-zero at least once
Returns:
profile (np.array(float)): Estimated probabilities of length len(nz_feat).
"""
# Initial profile estimate
prof_mat = matrix[:, barcode_indices]
profile = np.ravel(prof_mat[nz_feat, :].sum(axis=1))
zero_feat = np.flatnonzero(profile == 0)
# Simple Good Turing estimate
p_smoothed, p0 = sgt_proportions(profile[np.flatnonzero(profile)])
# Distribute p0 equally among the zero elements.
p0_i = p0 / len(zero_feat)
profile_p = np.repeat(p0_i, len(nz_feat))
profile_p[np.flatnonzero(profile)] = p_smoothed
assert np.isclose(profile_p.sum(), 1.0)
return profile_p
# Construct a background expression profile from barcodes with <= T UMIs
def est_background_profile_sgt(matrix, use_bcs):
""" Estimate a gene expression profile on a given subset of barcodes.
Use Good-Turing to smooth the estimated profile.
Args:
matrix (scipy.sparse.csc_matrix): Sparse matrix of all counts
use_bcs (np.array(int)): Indices of barcodes to use (col indices into matrix)
Returns:
profile (use_features, np.array(float)): Estimated probabilities of length use_features.
"""
# Use features that are nonzero anywhere in the data
use_feats = np.flatnonzero(np.asarray(matrix.sum(1)))
# Estimate background profile
bg_profile_p = estimate_profile_sgt(matrix, use_bcs, use_feats)
return (use_feats, bg_profile_p)
# Sten Linnarsson's version (Aug 2019)
def call_cells(matrix: sparse.csr_matrix, expected_n_cells: int = 5000) -> np.ndarray:
"""
Determine likely true cells among the barcodes by contrasting with the ambient RNA profile
Args:
matrix: expression matrix
expected_n_cells: expected number of true cells in the sample
Returns:
calls: vector of bools indicating true cell barcodes
"""
n_barcodes = matrix.shape[1]
expected_n_cells = min(expected_n_cells, n_barcodes // 5)
total_umis = np.array(matrix.sum(axis=0))[0] # total UMIs per barcode
# upper limit of UMIs for barcodes considered ambient, calculated as greatest UMI count after removing twice the expected number of cells
max_ambient_umis = np.percentile(total_umis, 100 * (n_barcodes - expected_n_cells * 2) / n_barcodes)
# median number of UMIs among the top expected_n_cells barcodes
median_initial_umis = np.median(total_umis[total_umis > np.percentile(total_umis, 100 * (n_barcodes - expected_n_cells) / n_barcodes)])
min_cell_umis = int(max(500, median_initial_umis * 0.1)) # 10% of median, but at least 500 UMIs
# Ambient RNA beads, covering the range 20 to max_amient_umis
ambient_bcs = (total_umis < max_ambient_umis) & (total_umis > 20)
if ambient_bcs.sum() == 0:
# No beads were ambient, because cells had very low UMIs
logging.warning("No ambient RNA beads were found; maybe sample had too few cells?")
return max_ambient_umis, np.ones_like(total_umis)
try:
eval_features, ambient_profile_p = est_background_profile_sgt(matrix, ambient_bcs)
except SimpleGoodTuringError as e:
logging.error(e)
return max_ambient_umis, np.ones_like(total_umis)
# Evaluate candidate barcodes
eval_bcs = total_umis > min_cell_umis
eval_mat = matrix[eval_features, :][:, eval_bcs]
# Compute observed log-likelihood of barcodes being generated from ambient RNA
obs_loglk = eval_multinomial_loglikelihoods(eval_mat, ambient_profile_p)
# Simulate log likelihoods
distinct_ns, sim_loglk = simulate_multinomial_loglikelihoods(ambient_profile_p, total_umis[eval_bcs], num_sims=1000, verbose=True)
# Compute p-values
pvalues = compute_ambient_pvalues(total_umis[eval_bcs], obs_loglk, distinct_ns, sim_loglk)
pvalues_adj = adjust_pvalue_bh(pvalues)
pvalues_adj_all = np.ones_like(total_umis)
pvalues_adj_all[eval_bcs] = pvalues_adj
return max_ambient_umis, pvalues_adj_all
|