1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
|
# -*- coding: utf-8 -*-
"""
This module implements community detection.
"""
from __future__ import print_function
import array
import random
import networkx as nx
from .community_status import Status
__author__ = """Thomas Aynaud (thomas.aynaud@lip6.fr)"""
# Copyright (C) 2009 by
# Thomas Aynaud <thomas.aynaud@lip6.fr>
# All rights reserved.
# BSD license.
__PASS_MAX = -1
__MIN = 0.0000001
def partition_at_level(dendrogram, level):
"""Return the partition of the nodes at the given level
A dendrogram is a tree and each level is a partition of the graph nodes.
Level 0 is the first partition, which contains the smallest communities,
and the best is len(dendrogram) - 1.
The higher the level is, the bigger are the communities
Parameters
----------
dendrogram : list of dict
a list of partitions, ie dictionnaries where keys of the i+1 are the
values of the i.
level : int
the level which belongs to [0..len(dendrogram)-1]
Returns
-------
partition : dictionnary
A dictionary where keys are the nodes and the values are the set it
belongs to
Raises
------
KeyError
If the dendrogram is not well formed or the level is too high
See Also
--------
best_partition which directly combines partition_at_level and
generate_dendrogram to obtain the partition of highest modularity
Examples
--------
>>> G=nx.erdos_renyi_graph(100, 0.01)
>>> dendrogram = generate_dendrogram(G)
>>> for level in range(len(dendrogram) - 1) :
>>> print("partition at level", level, "is", partition_at_level(dendrogram, level)) # NOQA
"""
partition = dendrogram[0].copy()
for index in range(1, level + 1):
for node, community in partition.items():
partition[node] = dendrogram[index][community]
return partition
def modularity(partition, graph, weight='weight'):
"""Compute the modularity of a partition of a graph
Parameters
----------
partition : dict
the partition of the nodes, i.e a dictionary where keys are their nodes
and values the communities
graph : networkx.Graph
the networkx graph which is decomposed
weight : str, optional
the key in graph to use as weight. Default to 'weight'
Returns
-------
modularity : float
The modularity
Raises
------
KeyError
If the partition is not a partition of all graph nodes
ValueError
If the graph has no link
TypeError
If graph is not a networkx.Graph
References
----------
.. 1. Newman, M.E.J. & Girvan, M. Finding and evaluating community
structure in networks. Physical Review E 69, 26113(2004).
Examples
--------
>>> G=nx.erdos_renyi_graph(100, 0.01)
>>> part = best_partition(G)
>>> modularity(part, G)
"""
if graph.is_directed():
raise TypeError("Bad graph type, use only non directed graph")
inc = dict([])
deg = dict([])
links = graph.size(weight=weight)
if links == 0:
raise ValueError("A graph without link has an undefined modularity")
for node in graph:
com = partition[node]
deg[com] = deg.get(com, 0.) + graph.degree(node, weight=weight)
for neighbor, datas in graph[node].items():
edge_weight = datas.get(weight, 1)
if partition[neighbor] == com:
if neighbor == node:
inc[com] = inc.get(com, 0.) + float(edge_weight)
else:
inc[com] = inc.get(com, 0.) + float(edge_weight) / 2.
res = 0.
for com in set(partition.values()):
res += (inc.get(com, 0.) / links) - \
(deg.get(com, 0.) / (2. * links)) ** 2
return res
def best_partition(graph, partition=None,
weight='weight', resolution=1., randomize=False):
"""Compute the partition of the graph nodes which maximises the modularity
(or try..) using the Louvain heuristices
This is the partition of highest modularity, i.e. the highest partition
of the dendrogram generated by the Louvain algorithm.
Parameters
----------
graph : networkx.Graph
the networkx graph which is decomposed
partition : dict, optional
the algorithm will start using this partition of the nodes.
It's a dictionary where keys are their nodes and values the communities
weight : str, optional
the key in graph to use as weight. Default to 'weight'
resolution : double, optional
Will change the size of the communities, default to 1.
represents the time described in
"Laplacian Dynamics and Multiscale Modular Structure in Networks",
R. Lambiotte, J.-C. Delvenne, M. Barahona
randomize : boolean, optional
Will randomize the node evaluation order and the community evaluation
order to get different partitions at each call
Returns
-------
partition : dictionnary
The partition, with communities numbered from 0 to number of communities
Raises
------
NetworkXError
If the graph is not Eulerian.
See Also
--------
generate_dendrogram to obtain all the decompositions levels
Notes
-----
Uses Louvain algorithm
References
----------
.. 1. Blondel, V.D. et al. Fast unfolding of communities in
large networks. J. Stat. Mech 10008, 1-12(2008).
Examples
--------
>>> #Basic usage
>>> G=nx.erdos_renyi_graph(100, 0.01)
>>> part = best_partition(G)
>>> #other example to display a graph with its community :
>>> #better with karate_graph() as defined in networkx examples
>>> #erdos renyi don't have true community structure
>>> G = nx.erdos_renyi_graph(30, 0.05)
>>> #first compute the best partition
>>> partition = community.best_partition(G)
>>> #drawing
>>> size = float(len(set(partition.values())))
>>> pos = nx.spring_layout(G)
>>> count = 0.
>>> for com in set(partition.values()) :
>>> count += 1.
>>> list_nodes = [nodes for nodes in partition.keys()
>>> if partition[nodes] == com]
>>> nx.draw_networkx_nodes(G, pos, list_nodes, node_size = 20,
node_color = str(count / size))
>>> nx.draw_networkx_edges(G, pos, alpha=0.5)
>>> plt.show()
"""
dendo = generate_dendrogram(graph,
partition,
weight,
resolution,
randomize)
return partition_at_level(dendo, len(dendo) - 1)
def generate_dendrogram(graph,
part_init=None,
weight='weight',
resolution=1.,
randomize=False):
"""Find communities in the graph and return the associated dendrogram
A dendrogram is a tree and each level is a partition of the graph nodes.
Level 0 is the first partition, which contains the smallest communities,
and the best is len(dendrogram) - 1. The higher the level is, the bigger
are the communities
Parameters
----------
graph : networkx.Graph
the networkx graph which will be decomposed
part_init : dict, optional
the algorithm will start using this partition of the nodes. It's a
dictionary where keys are their nodes and values the communities
weight : str, optional
the key in graph to use as weight. Default to 'weight'
resolution : double, optional
Will change the size of the communities, default to 1.
represents the time described in
"Laplacian Dynamics and Multiscale Modular Structure in Networks",
R. Lambiotte, J.-C. Delvenne, M. Barahona
Returns
-------
dendrogram : list of dictionaries
a list of partitions, ie dictionnaries where keys of the i+1 are the
values of the i. and where keys of the first are the nodes of graph
Raises
------
TypeError
If the graph is not a networkx.Graph
See Also
--------
best_partition
Notes
-----
Uses Louvain algorithm
References
----------
.. 1. Blondel, V.D. et al. Fast unfolding of communities in large
networks. J. Stat. Mech 10008, 1-12(2008).
Examples
--------
>>> G=nx.erdos_renyi_graph(100, 0.01)
>>> dendo = generate_dendrogram(G)
>>> for level in range(len(dendo) - 1) :
>>> print("partition at level", level,
>>> "is", partition_at_level(dendo, level))
:param weight:
:type weight:
"""
if graph.is_directed():
raise TypeError("Bad graph type, use only non directed graph")
# special case, when there is no link
# the best partition is everyone in its community
if graph.number_of_edges() == 0:
part = dict([])
for node in graph.nodes():
part[node] = node
return [part]
current_graph = graph.copy()
status = Status()
status.init(current_graph, weight, part_init)
status_list = list()
__one_level(current_graph, status, weight, resolution, randomize)
new_mod = __modularity(status)
partition = __renumber(status.node2com)
status_list.append(partition)
mod = new_mod
current_graph = induced_graph(partition, current_graph, weight)
status.init(current_graph, weight)
while True:
__one_level(current_graph, status, weight, resolution, randomize)
new_mod = __modularity(status)
if new_mod - mod < __MIN:
break
partition = __renumber(status.node2com)
status_list.append(partition)
mod = new_mod
current_graph = induced_graph(partition, current_graph, weight)
status.init(current_graph, weight)
return status_list[:]
def induced_graph(partition, graph, weight="weight"):
"""Produce the graph where nodes are the communities
there is a link of weight w between communities if the sum of the weights
of the links between their elements is w
Parameters
----------
partition : dict
a dictionary where keys are graph nodes and values the part the node
belongs to
graph : networkx.Graph
the initial graph
weight : str, optional
the key in graph to use as weight. Default to 'weight'
Returns
-------
g : networkx.Graph
a networkx graph where nodes are the parts
Examples
--------
>>> n = 5
>>> g = nx.complete_graph(2*n)
>>> part = dict([])
>>> for node in g.nodes() :
>>> part[node] = node % 2
>>> ind = induced_graph(part, g)
>>> goal = nx.Graph()
>>> goal.add_weighted_edges_from([(0,1,n*n),(0,0,n*(n-1)/2), (1, 1, n*(n-1)/2)]) # NOQA
>>> nx.is_isomorphic(int, goal)
True
"""
ret = nx.Graph()
ret.add_nodes_from(partition.values())
for node1, node2, datas in graph.edges(data=True):
edge_weight = datas.get(weight, 1)
com1 = partition[node1]
com2 = partition[node2]
w_prec = ret.get_edge_data(com1, com2, {weight: 0}).get(weight, 1)
ret.add_edge(com1, com2, **{weight: w_prec + edge_weight})
return ret
def __renumber(dictionary):
"""Renumber the values of the dictionary from 0 to n
"""
count = 0
ret = dictionary.copy()
new_values = dict([])
for key in dictionary.keys():
value = dictionary[key]
new_value = new_values.get(value, -1)
if new_value == -1:
new_values[value] = count
new_value = count
count += 1
ret[key] = new_value
return ret
def load_binary(data):
"""Load binary graph as used by the cpp implementation of this algorithm
"""
data = open(data, "rb")
reader = array.array("I")
reader.fromfile(data, 1)
num_nodes = reader.pop()
reader = array.array("I")
reader.fromfile(data, num_nodes)
cum_deg = reader.tolist()
num_links = reader.pop()
reader = array.array("I")
reader.fromfile(data, num_links)
links = reader.tolist()
graph = nx.Graph()
graph.add_nodes_from(range(num_nodes))
prec_deg = 0
for index in range(num_nodes):
last_deg = cum_deg[index]
neighbors = links[prec_deg:last_deg]
graph.add_edges_from([(index, int(neigh)) for neigh in neighbors])
prec_deg = last_deg
return graph
def __randomly(seq, randomize):
""" Convert sequence or iterable to an iterable in random order if
randomize """
if randomize:
shuffled = list(seq)
random.shuffle(shuffled)
return iter(shuffled)
return seq
def __one_level(graph, status, weight_key, resolution, randomize):
"""Compute one level of communities
"""
modified = True
nb_pass_done = 0
cur_mod = __modularity(status)
new_mod = cur_mod
while modified and nb_pass_done != __PASS_MAX:
cur_mod = new_mod
modified = False
nb_pass_done += 1
for node in __randomly(graph.nodes(), randomize):
com_node = status.node2com[node]
degc_totw = status.gdegrees.get(node, 0.) / (status.total_weight * 2.) # NOQA
neigh_communities = __neighcom(node, graph, status, weight_key)
remove_cost = - resolution * neigh_communities.get(com_node,0) + \
(status.degrees.get(com_node, 0.) - status.gdegrees.get(node, 0.)) * degc_totw
__remove(node, com_node,
neigh_communities.get(com_node, 0.), status)
best_com = com_node
best_increase = 0
for com, dnc in __randomly(neigh_communities.items(),
randomize):
incr = remove_cost + resolution * dnc - \
status.degrees.get(com, 0.) * degc_totw
if incr > best_increase:
best_increase = incr
best_com = com
__insert(node, best_com,
neigh_communities.get(best_com, 0.), status)
if best_com != com_node:
modified = True
new_mod = __modularity(status)
if new_mod - cur_mod < __MIN:
break
def __neighcom(node, graph, status, weight_key):
"""
Compute the communities in the neighborhood of node in the graph given
with the decomposition node2com
"""
weights = {}
for neighbor, datas in graph[node].items():
if neighbor != node:
edge_weight = datas.get(weight_key, 1)
neighborcom = status.node2com[neighbor]
weights[neighborcom] = weights.get(neighborcom, 0) + edge_weight
return weights
def __remove(node, com, weight, status):
""" Remove node from community com and modify status"""
status.degrees[com] = (status.degrees.get(com, 0.)
- status.gdegrees.get(node, 0.))
status.internals[com] = float(status.internals.get(com, 0.) -
weight - status.loops.get(node, 0.))
status.node2com[node] = -1
def __insert(node, com, weight, status):
""" Insert node into community and modify status"""
status.node2com[node] = com
status.degrees[com] = (status.degrees.get(com, 0.) +
status.gdegrees.get(node, 0.))
status.internals[com] = float(status.internals.get(com, 0.) +
weight + status.loops.get(node, 0.))
def __modularity(status):
"""
Fast compute the modularity of the partition of the graph using
status precomputed
"""
links = float(status.total_weight)
result = 0.
for community in set(status.node2com.values()):
in_degree = status.internals.get(community, 0.)
degree = status.degrees.get(community, 0.)
if links > 0:
result += in_degree / links - ((degree / (2. * links)) ** 2)
return result
|