1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
Louvain Community Detection
===========================
.. image:: https://travis-ci.org/taynaud/python-louvain.svg?branch=master
:target: https://travis-ci.org/taynaud/python-louvain
.. image:: https://readthedocs.org/projects/python-louvain/badge/?version=latest
:target: http://python-louvain.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
Installing
----------
To build and install from source, run
.. code-block:: shell
python setup.py install
You can also install from pip with
.. code-block:: shell
pip install python-louvain
The package name on pip is :code:`python-louvain`
but it is imported as :code:`community` in python.
More documentation for this module can be found at
`http://python-louvain.readthedocs.io/ <http://python-louvain.readthedocs.io/>`_
Usage
-----
To use as a Python library
.. code-block:: python
from community import community_louvain
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import networkx as nx
# load the karate club graph
G = nx.karate_club_graph()
# compute the best partition
partition = community_louvain.best_partition(G)
# draw the graph
pos = nx.spring_layout(G)
# color the nodes according to their partition
cmap = cm.get_cmap('viridis', max(partition.values()) + 1)
nx.draw_networkx_nodes(G, pos, partition.keys(), node_size=40,
cmap=cmap, node_color=list(partition.values()))
nx.draw_networkx_edges(G, pos, alpha=0.5)
plt.show()
It can also be run on the command line
.. code-block:: bash
$ community <filename>
where :code:`filename` is a binary file as generated by the
convert utility distributed with the C implementation at
`https://sites.google.com/site/findcommunities/ <https://sites.google.com/site/findcommunities/>`_
However as this is mostly for debugging purposes its use should be avoided.
Instead importing this library for use in Python is recommended.
Documentation
-------------
You can find documentation at `https://python-louvain.readthedocs.io/ <https://python-louvain.readthedocs.io/>`_
To generate documentation, run
.. code-block:: shell
pip install numpydoc sphinx
cd docs
make
Tests
-----
To run tests, run
.. code-block:: shell
pip install nose
python setup.py test
|