1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
"""Python bindings for the Littlewood-Richardson Calculator."""
from liblrcalc cimport *
cdef ivector *iv_newpy(pv):
cdef ivector *v
cdef int i
v = iv_new(len(pv))
if v is NULL:
raise MemoryError()
for i in range(len(pv)):
v.array[i] = pv[i]
return v
cdef tuple iv_tuple(ivector *v):
cdef int i
return tuple(v.array[i] for i in range(v.length))
cdef dict ivlc_dict_tuple(ivlincomb *lc):
cdef ivlc_iter itr
res = dict()
ivlc_first(lc, &itr)
while ivlc_good(&itr):
res[iv_tuple(ivlc_key(&itr))] = ivlc_value(&itr)
ivlc_next(&itr)
return res
cdef tuple iv_part(ivector *v):
cdef int i, n
n = v.length
while n > 0 and v.array[n-1] == 0:
n -= 1
return tuple(v.array[i] for i in range(n))
cdef dict ivlc_dict_part(ivlincomb *lc):
cdef ivlc_iter itr
res = dict()
ivlc_first(lc, &itr)
while ivlc_good(&itr):
res[iv_part(ivlc_key(&itr))] = ivlc_value(&itr)
ivlc_next(&itr)
return res
cdef tuple iv_quantum(ivector *v, int level, bint degrees):
cdef int i, d, n
cdef tuple p
d = part_qdegree(v, level)
n = v.length
while n > 0 and part_qentry(v, n-1, d, level) == 0:
n -= 1
p = tuple(part_qentry(v, i, d, level) for i in range(n))
return (p, d) if degrees else p
cdef dict ivlc_dict_quantum(ivlincomb *lc, int level, bint degrees):
cdef ivlc_iter itr
res = dict()
ivlc_first(lc, &itr)
while ivlc_good(&itr):
res[iv_quantum(ivlc_key(&itr), level, degrees)] = ivlc_value(&itr)
ivlc_next(&itr)
return res
cdef tuple iv_pair(ivector *v, int rows, int cols):
cdef int i;
p1 = tuple(v.array[i] - cols for i in range(rows) if v.array[i] != cols)
p2 = tuple(v.array[i] for i in range(rows, v.length) if v.array[i] != 0)
return (p1, p2)
cdef dict ivlc_dict_pair(ivlincomb *lc, int rows, int cols):
cdef ivlc_iter itr
res = dict()
ivlc_first(lc, &itr)
while ivlc_good(&itr):
res[iv_pair(ivlc_key(&itr), rows, cols)] = ivlc_value(&itr)
ivlc_next(&itr)
return res
def lrcoef(out, inn1, inn2):
"""Compute a single Littlewood-Richardson coefficient."""
cdef ivector *cout = NULL
cdef ivector *cinn1 = NULL
cdef ivector *cinn2 = NULL
try:
cout = iv_newpy(out)
cinn1 = iv_newpy(inn1)
cinn2 = iv_newpy(inn2)
return schur_lrcoef(cout, cinn1, cinn2)
finally:
if cinn2 is not NULL:
iv_free(cinn2)
if cinn1 is not NULL:
iv_free(cinn1)
if cout is not NULL:
iv_free(cout)
def mult(sh1, sh2, int rows=-1, int cols=-1):
"""Compute the product of two Schur functions."""
cdef ivector *csh1 = NULL
cdef ivector *csh2 = NULL
cdef ivlincomb *cprd = NULL
try:
csh1 = iv_newpy(sh1)
csh2 = iv_newpy(sh2)
cprd = schur_mult(csh1, csh2, rows, cols, -1)
if cprd is NULL:
raise MemoryError()
return ivlc_dict_part(cprd)
finally:
if cprd is not NULL:
ivlc_free_all(cprd)
if csh2 is not NULL:
iv_free(csh2)
if csh1 is not NULL:
iv_free(csh1)
def mult_fusion(sh1, sh2, int rows, int level):
"""Compute a product in the fusion ring of type A."""
cdef ivector *csh1 = NULL
cdef ivector *csh2 = NULL
cdef ivlincomb *cprd = NULL
try:
csh1 = iv_newpy(sh1)
csh2 = iv_newpy(sh2)
cprd = schur_mult_fusion(csh1, csh2, rows, level)
if cprd is NULL:
raise MemoryError()
return ivlc_dict_part(cprd)
finally:
if cprd is not NULL:
ivlc_free_all(cprd)
if csh2 is not NULL:
iv_free(csh2)
if csh1 is not NULL:
iv_free(csh1)
def mult_quantum(sh1, sh2, int rows, int cols, bint degrees=False):
"""Compute quantum product of Schubert classes on a Grassmannian."""
cdef ivector *csh1 = NULL
cdef ivector *csh2 = NULL
cdef ivlincomb *cprd = NULL
try:
csh1 = iv_newpy(sh1)
csh2 = iv_newpy(sh2)
cprd = schur_mult_fusion(csh1, csh2, rows, cols)
if cprd is NULL:
raise MemoryError()
return ivlc_dict_quantum(cprd, cols, degrees)
finally:
if cprd is not NULL:
ivlc_free_all(cprd)
if csh2 is not NULL:
iv_free(csh2)
if csh1 is not NULL:
iv_free(csh1)
def skew(outer, inner, int rows=-1):
"""Compute the Schur expansion of a skew Schur function."""
cdef ivector *cout = NULL
cdef ivector *cinn = NULL
cdef ivlincomb *cres = NULL
try:
cout = iv_newpy(outer)
cinn = iv_newpy(inner)
cres = schur_skew(cout, cinn, rows, -1)
if cres is NULL:
raise MemoryError()
return ivlc_dict_part(cres)
finally:
if cres is not NULL:
ivlc_free_all(cres)
if cinn is not NULL:
iv_free(cinn)
if cout is not NULL:
iv_free(cout)
def coprod(sh, bint all=False):
"""Compute the coproduct of a Schur function."""
cdef ivector *csh = NULL
cdef ivlincomb *cres = NULL
cdef int rows, cols
try:
csh = iv_newpy(sh)
rows = csh.length
while rows > 0 and csh.array[rows - 1] == 0:
rows -= 1
cols = 0 if rows == 0 else csh.array[0]
cres = schur_coprod(csh, rows, cols, -1, all)
if cres is NULL:
raise MemoryError()
return ivlc_dict_pair(cres, rows, cols)
finally:
if cres is not NULL:
ivlc_free_all(cres)
if csh is not NULL:
iv_free(csh)
def schubert_poly(w):
"""Compute the Schubert polynomial of a permutation."""
cdef ivector *cw = NULL
cdef ivlincomb *cres = NULL
try:
cw = iv_newpy(w)
cres = trans(cw, 0)
if cres is NULL:
raise MemoryError()
return ivlc_dict_tuple(cres)
finally:
if cres is not NULL:
ivlc_free_all(cres)
if cw is not NULL:
iv_free(cw)
def schubmult(w1, w2, int rank=0):
"""Compute the product of two Schubert polynomials."""
cdef ivector *cw1 = NULL
cdef ivector *cw2 = NULL
cdef ivlincomb *cres = NULL
try:
cw1 = iv_newpy(w1)
cw2 = iv_newpy(w2)
cres = mult_schubert(cw1, cw2, rank)
if cres is NULL:
raise MemoryError()
return ivlc_dict_tuple(cres)
finally:
if cres is not NULL:
ivlc_free_all(cres)
if cw2 is not NULL:
iv_free(cw2)
if cw1 is not NULL:
iv_free(cw1)
def schubmult_str(str1, str2):
"""Compute product of Schubert polynomials using string notation."""
cdef ivector *cs1 = NULL
cdef ivector *cs2 = NULL
cdef ivlincomb *cres = NULL
try:
cs1 = iv_newpy(str1)
cs2 = iv_newpy(str2)
cres = mult_schubert_str(cs1, cs2)
if cres is NULL:
raise MemoryError()
return ivlc_dict_tuple(cres)
finally:
if cres is not NULL:
ivlc_free_all(cres)
if cs2 is not NULL:
iv_free(cs2)
if cs1 is not NULL:
iv_free(cs1)
cdef class lr_iterator:
"""Iterate through column words of LR tableaux of given skew shape."""
cdef lrtab_iter *_itr
def __cinit__(self, outer, inner, int rows=-1):
cdef ivector *out = NULL
cdef ivector *inn = NULL
try:
out = iv_newpy(outer)
inn = iv_newpy(inner)
self._itr = lrit_new(out, inn, NULL, rows, -1, -1)
if self._itr is NULL:
raise MemoryError()
finally:
if inn is not NULL:
iv_free(inn)
if out is not NULL:
iv_free(out)
def __iter__(self):
return self
def __next__(self):
cdef int i
if not lrit_good(self._itr):
raise StopIteration
word = tuple(self._itr.array[i].value
for i in range(self._itr.size))
lrit_next(self._itr)
return word
def __dealloc(self):
if self._itr is not NULL:
lrit_free(self._itr)
|