1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Module of symmetrical zero-extension or cut of data
Ported from ltfat_2.1.0/fourier/middlepad.m
.. moduleauthor:: Florent Jaillet
"""
import numpy as np
from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post
def middlepad(f, L, dim=None, centering='wp'):
"""Symmetrically zero-extends or cuts a function
- Usage:
| ``h = middlepad(f, L)``
| ``h = middlepad(f, L, dim)``
| ``h = middlepad(f, L, ...)``
- Input parameters:
:param numpy.ndarray f: Input array
:param int L: Length of the output array
:param int dim: Axis over which to zero-extend or cut **f**
:param str centering: Flag specifying if **f** is whole point even when
``centering='wp'`` or half point even when ``centering='hp'``
- Output parameters:
:returns: Zero-extended or cut array
:rtype: numpy.ndarray
``middlepad(f, L)`` zero-extends or cuts **f** to length **L** by
inserting zeros in the middle of the vector, or by cutting in the middle
of the vector.
If **f** is whole-point even, ``middlepad(f, L)`` will also be
whole-point even.
``middlepad(f, L, dim)`` does the same along dimension **dim**.
If **f** has even length, then **f** will not be purely zero-extended,
but the last element will be repeated once and multiplied by ``1/2``.
That is, the support of **f** will increase by one!
Adding the flag ``centering='wp'`` will cut or extend whole point even
functions (the default). Adding ``centering='hp'`` will do the same for
half point even functions.
.. seealso:: :func:`~ltfatpy.fourier.isevenfunction.isevenfunction`,
:func:`~ltfatpy.sigproc.fir2long.fir2long`,
:func:`~ltfatpy.fourier.fftresample.fftresample`
"""
# Note: For a future improvement, it might be possible to replace the use
# of numpy.concatenate with numpy.r_ in this function to simplify the code.
if not isinstance(L, int):
raise TypeError('L must be an integer.')
if L < 1:
raise ValueError('L must be larger than 0.')
f, L, Ls, W, dim, permutedsize, order = assert_sigreshape_pre(f, L, dim)
Lorig = Ls
# Skip the main section if there is nothing to do. This is necessary
# because some of the code below cannot handle the case of 'nothing to do'
if L != Ls:
if centering == 'wp':
# --------------- WPE case --------------------------------------
if Lorig == 1:
# Rather trivial case
h = np.concatenate((f[np.newaxis, 0, :],
np.zeros((L-1, W), dtype=f.dtype)))
else:
if Lorig > L:
# Cut
if L % 2 == 0:
# L even. Use average of endpoints.
h = np.concatenate((f[:L//2, :],
(f[np.newaxis, L//2, :] +
f[np.newaxis, Lorig-L//2, :]) / 2,
f[Lorig-L//2+1:Lorig, :]))
else:
# No problem, just cut.
h = np.concatenate((f[:(L+1)//2, :],
f[Lorig-(L-1)//2:Lorig, :]))
else:
d = L - Lorig
# Extend
if Lorig % 2 == 0:
# Lorig even. We must split a value.
h = np.concatenate((f[:Lorig//2, :],
f[np.newaxis, Lorig//2, :]/2,
np.zeros((d-1, W), dtype=f.dtype),
f[np.newaxis, Lorig//2, :]/2,
f[Lorig//2+1:Lorig, :]))
else:
# Lorig is odd, we can just insert zeros.
h = np.concatenate((f[:(Lorig+1)//2, :],
np.zeros((d, W), dtype=f.dtype),
f[(Lorig+1)//2:Lorig, :]))
elif centering == 'hp':
# ------------------ HPE case ------------------------------------
# NOTE: There is a bug here in LTFAT 2.1.0 for Octave, see:
# https://sourceforge.net/p/ltfat/bugs/123
# This bug arise because the case "if Lorig==1" hasn't been
# implemented in the Octave code when centering = 'hp'.
# To solve this bug, we simply remove the test "if Lorig==1", which
# seems to lead to satisfactory results.
if Lorig > L:
d = Lorig-L
# Cut
if L % 2 == 0:
# L even
# No problem, just cut.
h = np.concatenate((f[:L//2, :], f[Lorig-L//2:Lorig, :]))
else:
# Average of endpoints.
h = np.concatenate((f[:(L-1)//2, :],
(f[np.newaxis, (L-1)//2, :] +
f[np.newaxis, Lorig-(L+1)//2, :]) / 2,
f[Lorig-(L-1)//2:Lorig, :]))
else:
d = L-Lorig
# Extend
if Lorig % 2 == 0:
# Lorig even. We can just insert zeros in the middle.
h = np.concatenate((f[:Lorig//2, :],
np.zeros((d, W), dtype=f.dtype),
f[Lorig//2:Lorig, :]))
else:
# Lorig odd. We need to split a value in two
h = np.concatenate((f[:(Lorig-1)//2, :],
f[np.newaxis, (Lorig-1)//2, :]/2,
np.zeros((d-1, W), f.dtype),
f[np.newaxis, (Lorig-1)//2, :]/2,
f[(Lorig+1)//2:Lorig, :]))
else:
# we don't want this function to return a reference or a view to the
# input, so we make a copy
h = f.copy()
h = assert_sigreshape_post(h, dim, permutedsize, order)
return h
|