File: pherm.py

package info (click to toggle)
python-ltfatpy 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 41,408 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (274 lines) | stat: -rw-r--r-- 9,207 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""This module contains samples of a periodized Hermite function

Ported from ltfat_2.1.0/fourier/pherm.m

.. moduleauthor:: Denis Arrivault
"""

import numpy as np

from ltfatpy.comp.comp_hermite import comp_hermite
from ltfatpy.comp.comp_hermite_all import comp_hermite_all
from ltfatpy.sigproc.normalize import normalize


def pherm(L, order, tfr=1, phase='accurate', orthtype='noorth'):
    """PHERM  Periodized Hermite function

    - Usage:
        | ``g, = pherm(L,order)``
        | ``g, = pherm(L,order,tfr)``
        | ``g, D = pherm(...)``

    - Input parameters:

    :param int L: Length of vector.
    :param order: Order of Hermite function.
    :type order: scalar or numpy.ndarray
    :param float tfr: ratio between time and frequency support. 1 by default
    :param str phase: 'accurate' or 'fast' (see below)
    :param str orthtype: 'noorth', 'polar' or 'qr' (see below).

    - Output parameters:

    :returns: ``(g, D)``
    :rtype: tuple
    :var numpy.ndarray g: The periodized Hermite function
    :var numpy.ndarray D: The eigenvalues of the Discrete
        Fourier Transform corresponding to the Hermite functions.

    ``pherm(L,order,tfr)`` computes samples of a periodized Hermite function
    of order **order**. **order** is counted from 0, so the zero'th order
    Hermite function is the Gaussian.

    The parameter **tfr** determines the ratio between the effective support
    of **g** and the effective support of the DFT of **g**. If :math:`tfr>1`
    then **g** has a wider support than the DFT of **g**.

    ``pherm(L,order)`` does the same setting :math:`tfr=1`.

    If **order** is a vector, ``pherm`` will return a matrix, where each column
    is a Hermite function with the corresponding **order**.

    ``g, D = pherm(...)`` also returns the eigenvalues **D** of the Discrete
    Fourier Transform corresponding to the Hermite functions.

    The returned functions are eigenvectors of the DFT. The Hermite
    functions are orthogonal to all other Hermite functions with a
    different eigenvalue, but eigenvectors with the same eigenvalue are
    not orthogonal (but see the flags below).

    **phase** can take the following values:

      'accurate'  By default it uses a numerically very accurate that
                  computes each Hermite function individually. This is the
                  default

      'fast'      Use a less accurate algorithm that calculates all the
                  Hermite up to a given order at once.

    **orthtype** can take the following values:

      'noorth'    orthonormalization of the Hermite functions. This is the
                  default.

      'polar'     Orthonormalization of the Hermite functions using the
                  polar decomposition orthonormalization method.

      'qr'        Orthonormalization of the Hermite functions using the
                  Gram-Schmidt orthonormalization method (usign ``qr``).

    If you just need to compute a single Hermite function, there is no
    speed difference between the **accurate** and **fast** algorithm.

    - Examples:

    The following plot shows the spectrograms of 4 Hermite functions of
    length 200 with order 1, 10, 100, and 190:::

        >>> import numpy as np
        >>> import matplotlib.pyplot as plt
        >>> from ltfatpy import sgram
        >>> plt.close('all')
        >>> _ = plt.figure()
        >>> _ = plt.subplot(221)
        >>> _ = sgram(pherm(200, 1)[0], nf=True, tc=True, normalization='lin',
        ... colorbar=False)
        >>> _ = plt.subplot(2,2,2)
        >>> _ = sgram(pherm(200, 10)[0], nf=True, tc=True, normalization='lin',
        ... colorbar=False)
        >>> _ = plt.subplot(2,2,3)
        >>> _ = sgram(pherm(200, 100)[0], nf=True, tc=True,
        ... normalization='lin', colorbar=False)
        >>> _ = plt.subplot(2,2,4)
        >>> _ = sgram(pherm(200, 190)[0], nf=True, tc=True,
        ... normalization='lin', colorbar=False)
        >>> plt.show()

    .. image:: images/pherm.png
       :width: 700px
       :alt: spectrograms
       :align: center
    .. seealso:: :func:`~ltfatpy.fourier.pgauss.pgauss`,
                :func:`~ltfatpy.fourier.psech.psech`
    """
    if not np.isscalar(L) or isinstance(L, str):
        raise TypeError("L must be a scalar")

    if not isinstance(L, int):
        raise TypeError('L must be an integer')

    # Parse tfr and order.
    if (not np.isscalar(tfr)):
        raise TypeError('tfr must be a scalar or vector')

    if np.isscalar(order) and not isinstance(order, str):
        W = 1
        order = np.array([order])
    elif isinstance(order, np.ndarray):
        order = order.reshape(-1).copy()
        W = order.shape[0]
    else:
        raise TypeError('order must be a scalar or vector')

    # Calculate W windows.
    if 'accurate' in phase:
        # Calculate W windows.
        g = np.zeros((L, W))
        for w in range(W):
            thisorder = order[w]
            safe = get_safe(thisorder)
            # Outside the interval [-safe,safe]
            # then H(thisorder) is numerically zero.
            nk = int(np.ceil(safe/np.sqrt(L/np.sqrt(tfr))))
            sqrtl = np.sqrt(L)
            lr = np.arange(L)
            for k in range(-nk, nk+1):
                xval = (lr/sqrtl - k*sqrtl) / np.sqrt(tfr)
                g[:, w] = g[:, w] + comp_hermite(thisorder,
                                                 np.sqrt(2*np.pi)*xval)
    else:
        highestorder = np.max(order)
        safe = get_safe(highestorder)
        # Outside the interval [-safe,safe]
        # then H(thisorder) is numerically zero.
        nk = int(np.ceil(safe/np.sqrt(L/np.sqrt(tfr))))
        g = np.zeros((L, highestorder+1))
        sqrtl = np.sqrt(L)
        lr = np.arange(L)
        for k in range(-nk, nk+1):
            xval = (lr/sqrtl - k*sqrtl)/np.sqrt(tfr)
            g = g + comp_hermite_all(highestorder+1, np.sqrt(2*np.pi)*xval)
        g = g[:, order]

    if 'polar' in orthtype:
        # Orthonormalize within each of the 4 eigenspaces
        for ii in range(4):
            subidx = ((order % 4) == ii)
            gsub = g[:, subidx]
            if gsub.size:
                U, _, V = np.linalg.svd(gsub, full_matrices=False)
                gsub = np.dot(U, V)
            else:
                gsub = np.asarray([])
            g[:, subidx] = gsub

    if 'qr' in orthtype:
        # Orthonormalize within each of the 4 eigenspaces
        for ii in range(4):
            subidx = ((order % 4) == ii)
            gsub = g[:, subidx]
            if gsub.size:
                Q, _ = np.linalg.qr(gsub, mode='reduced')
            else:
                Q = np.asarray([])
            g[:, subidx] = Q

    if 'noorth' in orthtype:
        # Just normalize it, no orthonormalization
        g = normalize(g)[0]

    # set up the eigenvalues
    D = np.exp(-1j*order*np.pi/2)
    if W == 1:
        g = g.squeeze()
    return(g, D)


def get_safe(order):
    # These numbers have been computed numerically.
    if order <= 6:
        safe = 4
    else:
        if order <= 18:
            safe = 5
        else:
            if order <= 31:
                safe = 6
            else:
                if order <= 46:
                    safe = 7
                else:
                    # Anything else, use a high number.
                    safe = 12
    return safe

if __name__ == '__main__':  # pragma: no cover
    import doctest
    doctest.testmod()