1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Module of dgt calculation
Ported from ltfat_2.1.0/gabor/dgt.m
.. moduleauthor:: Denis Arrivault
"""
from __future__ import print_function, division
import numpy as np
from ltfatpy.comp.comp_sepdgt import comp_sepdgt
from ltfatpy.gabor.dgtlength import dgtlength
from ltfatpy.gabor.gabwin import gabwin
from ltfatpy.comp.assert_groworder import assert_groworder
from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post
def dgt(f, g, a, M, L=None, pt='freqinv'):
r"""Discrete Gabor Transform
- Usage:
| ``(c, Ls, g) = dgt(f, g, a, M)``
| ``(c, Ls, g) = dgt(f, g, a, M, L)``
| ``(c, Ls, g) = dgt(f, g, a, M, L, pt)``
- Input parameters:
:param numpy.ndarray f: Input data. **f** dtype has to be float64 or
complex128.
:param g: Window function.
:param int a: Length of time shift.
:param int M: Number of channels.
:param int L: Length of transform to do. Default is None.
:param str pt: 'freqinv' or 'timeinv'. Default is 'freqinv'
:type g: str, dict or numpy.ndarray
- Output parameters:
:returns: ``(c, Ls, g)``
:rtype: tuple
:var numpy.ndarray c: :math:`M*N` array of gabor transform coefficients.
Its dtype is complex128.
:var int Ls: length of input signal
:var numpy.ndarray g: updated window function. Its dtype is float64 or
complex128 depending on **f** dtype.
``dgt(f, g, a, M)`` computes the Gabor coefficients (also known as a
windowed Fourier transform) of the input signal **f** with respect to the
window **g** and parameters **a** and **M**. The output is a one or two
dimensional :class:`numpy.ndarray` in a rectangular layout.
The length of the transform will be the smallest multiple of **a** and
**M** that is larger than the signal. **f** will be zero-extended to the
length of the transform. If **f** is a 2d array, the transformation is
applied to each column. The length of the transform done can be obtained
by ``L = c.shape[1] * a``
The window **g** may be an array of numerical values, a text string or a
dictionary. See the help of :func:`~ltfatpy.gabor.gabwin` for more
details.
``dgt(f, g, a, M, L)`` computes the Gabor coefficients as above, but does
a transform of length **L**. **f** will be cut or zero-extended to length
**L** before the transform is done.
``(c, Ls) = dgt(f, g, a, M)`` or ``(c, Ls) = dgt(f, g, a, M, L)`` returns
the length of the input signal **f**. This is handy for reconstruction:
- Examples:
In the following example we create a Hermite function, which is a
complex-valued function with a circular spectrogram, and visualize
the coefficients using both :func:`~matplotlib.pyplot.imshow` and
:func:`~ltfatpy.gabor.plotdgt.plotdgt`:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from ltfatpy import plotdgt
>>> from ltfatpy import pherm
>>> a = 10
>>> M = 40
>>> L = a * M
>>> h, _ = pherm(L, 4) # 4th order hermite function.
>>> c = dgt(h, 'gauss', a, M)[0]
>>> # Simple plot: The squared modulus of the coefficients on
>>> # a linear scale
>>> _ = plt.imshow(np.abs(c)**2, interpolation='nearest', origin='upper')
>>> plt.show()
>>> # Better plot: zero-frequency is displayed in the middle,
>>> # and the coefficients are show on a logarithmic scale.
>>> _ = plotdgt(c, a, dynrange=50)
>>> plt.show()
.. image:: images/dgt_1.png
:width: 700px
:alt: imshow image
:align: center
.. image:: images/dgt_2.png
:width: 600px
:alt: plotdgt image
:align: center
``(c, Ls, g)=dgt(...)`` outputs the window used in the transform. This is
useful if the window was generated from a description in a string or
dictionary.
The Discrete Gabor Transform is defined as follows: Consider a window
**g** and a one-dimensional signal **f** of length **L** and define
:math:`N = L / a`. The output from ``c = dgt(f, g, a, M)`` is then given
by:
.. math::
c\\left(m+1,n+1\\right)=\\sum_{l=0}^{L-1}f(l+1)\\overline{g(l-an+1)}
e^{-2\\pi ilm/M}
where :math:`m=0,\\ldots,M-1`, :math:`n=0, \\ldots,N-1` and :math:`l-an`
are computed modulo **L**.
- Additional parameters:
``dgt`` takes the following keyword at the end of the line of input
arguments:
pt = 'freqinv'
Compute a DGT using a frequency-invariant phase. This
is the default convention described above.
pt = 'timeinv'
Compute a DGT using a time-invariant phase. This
convention is typically used in FIR-filter algorithms.
.. seealso:: :func:`~ltfatpy.gabor.idgt.idgt`,
:func:`~ltfatpy.gabor.gabwin.gabwin`, :func:`dwilt`,
:func:`~ltfatpy.gabor.gabdual.gabdual`,
:func:`~ltfatpy.gabor.phaselock.phaselock`
- References:
:cite:`fest98,gr01`
"""
# Verify f and determine its length
# Change f to correct shape.
(f, _unused, Ls, W, dim, permutedshape, order) = assert_sigreshape_pre(f,
L)
# Verify a, M and L
if L is None:
# Verify a, M and get L from the signal length f
L = dgtlength(Ls, a, M)
else:
# Verify a, M and get L
Luser = dgtlength(L, a, M)
if Luser != L:
raise ValueError(("Incorrect transform length L={0:d} specified." +
" Next valid length is L={1:d}. See the help" +
" of DGTLENGTH for the requirements.").
format(L, Luser))
# verify pt
if pt == 'timeinv':
pt = 1
elif pt == 'freqinv':
pt = 0
else:
raise ValueError("pt argument should be 'timeinv' or 'freqinv'.")
# Determine the window
(gnum, info) = gabwin(g, a, M, L)
if L < info['gl']:
raise ValueError('Window is too long.')
# final cleanup
# Postpad
C = 0
if Ls < L:
f = np.concatenate((f, C*np.ones((L-Ls, W))), axis=0)
else:
f = f[:L]
# call the computation subroutines
c = comp_sepdgt(f, gnum, a, M, pt)
# flags_do_timeinv = 1
order = assert_groworder(order)
permutedshape = (M, L//a) + permutedshape[1:]
c = assert_sigreshape_post(c, dim, permutedshape, order)
if [i for i in c.shape if i > 2] and c.shape[0] == 1:
c = c.squeeze()
return (c, Ls, gnum)
if __name__ == '__main__': # pragma: no cover
import doctest
doctest.testmod()
|