File: gabtight.py

package info (click to toggle)
python-ltfatpy 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 41,408 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (208 lines) | stat: -rw-r--r-- 6,556 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Module of canonical tight windows calculation

Ported from ltfat_2.1.0/gabor/gabtight.m

.. moduleauthor:: Denis Arrivault,
                  Florent Jaillet
"""

from __future__ import print_function, division

import numpy as np

from ltfatpy.gabor.dgtlength import dgtlength
from ltfatpy.sigproc.fir2long import fir2long
from ltfatpy.sigproc.long2fir import long2fir
from ltfatpy.gabor.gabframediag import gabframediag
from ltfatpy.comp.comp_gabtight_long import comp_gabtight_long


def gabtight(g, a, M, L=None):
    """Canonical tight window of Gabor frame

    - Usage:

        | ``gt = gabtight(None, a, M, L)``
        | ``gt = gabtight(g, a, M)``
        | ``gt = gabtight(g, a, M, L)``

    - Input parameters:

    :param g: Gabor window
    :type g: numpy.ndarray or str or dict
    :param int a: Length of time shift
    :param int M: Number of modulations
    :param int L: Length of window (optional except if **g** is None)

    - Output parameters:

    :return: Canonical tight window
    :rtype: numpy.ndarray

    ``gabtight(None, a, M, L)`` computes a nice tight window of length **L**
    for a lattice with parameters **a**, **M**. The window is not an FIR
    window, meaning that it will only generate a tight system if the system
    length is equal to **L**.

    ``gabtight(g, a, M)`` computes the canonical tight window of the Gabor
    frame with window **g** and parameters **a**, **M**.

    The window **g** may be a vector of numerical values, a text string or a
    dictionary. See the help of :func:`~ltfatpy.gabor.gabwin` for more details.

    If the length of **g** is equal to **M**, then the input window is assumed
    to be a FIR window. In this case, the canonical dual window also has
    length of **M**. Otherwise the smallest possible transform length is
    chosen as the window length.

    ``gabtight(g, a, M, L)`` returns a window that is tight for a system of
    length **L**. Unless the input window **g** is a FIR window, the returned
    tight window will have length **L**.

    If ``a > M`` then an orthonormal window of the Gabor Riesz sequence
    with window **g** and parameters **a** and **M** will be calculated.

    - Examples:

        The following example shows the canonical tight window of the Gaussian
        window. This is calculated by default by
        :func:`~ltfatpy.gabor.gabtight` if no window is specified:

        >>> import matplotlib.pyplot as plt
        >>> from ltfatpy import gabtight
        >>> a = 20
        >>> M = 30
        >>> L = 300
        >>> gt = gabtight(None, a, M, L)
        >>> # Plot in the time-domain
        >>> _ = plt.plot(gt)
        >>> plt.show()

    .. image:: images/gabtight.png
       :width: 700px
       :alt: pgauss gabtight image
       :align: center

    .. seealso::  :func:`~ltfatpy.gabor.gabdual.gabdual`,
                  :func:`~ltfatpy.gabor.gabwin.gabwin`,
                  :func:`~ltfatpy.sigproc.fir2long.fir2long`,
                  :func:`~ltfatpy.gabor.dgt.dgt`
    """
    # Verify a, M and L
    if g is None:
        g = 'gauss'

    if L is None:
        if not isinstance(g, np.ndarray):
            Ls = 1
        else:
            Ls = g.shape[0]
        L = dgtlength(Ls, a, M)
    else:
        Luser = dgtlength(L, a, M)
        if L != Luser:
            raise ValueError(("Incorrect transform length L={0:d} specified." +
                              " Next valid length  is L={1:d}. See the help" +
                              " of DGTLENGTH for the requirements.").format(L,
                             Luser))

    # Determine the window
    (g, info) = _call_gabwin(g, a, M, L)

    if L < info['gl']:
        raise ValueError('Window is too long.\n')
    R = 1
    if g.ndim > 1:
        R = g.shape[1]

    # Are we in the Riesz sequence of in the frame case
    scale = 1
    if a > M*R:
        # Handle the Riesz basis (dual lattice) case.
        # Swap a and M, and scale differently.
        scale = np.sqrt(a/M)
        a, M = M, a

    # Compute the rectangular case
    if info['gl'] <= M and R == 1:
        # Diagonal of the frame operator
        d = gabframediag(g, a, M, L)
        gt = g / np.sqrt(long2fir(d, info['gl']))
    else:
        # Long window case
        # Just in case, otherwise the call is harmless.
        g = fir2long(g, L)
        gt = comp_gabtight_long(g, a, M) * scale

    # post process result
    if np.issubdtype(g.dtype, np.floating):
        # If g is real then the output is known to be real.
        gt = gt.real

    return gt


def _call_gabwin(g, a, M, L):
    # gabwin is imported in a different function to avoid circular imports
    from ltfatpy.gabor.gabwin import gabwin
    return gabwin(g, a, M, L)

if __name__ == '__main__':  # pragma: no cover
    import doctest
    doctest.testmod()