File: idgtreal.py

package info (click to toggle)
python-ltfatpy 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 41,408 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (232 lines) | stat: -rw-r--r-- 7,819 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Module of idgtreal calculation

Ported from ltfat_2.1.0/gabor/idgtreal.m

.. moduleauthor:: Denis Arrivault
"""

from __future__ import print_function, division

import numpy as np

from ltfatpy.gabor.dgtlength import dgtlength
from ltfatpy.gabor.gabwin import gabwin
from ltfatpy.comp.comp_isepdgtreal import comp_isepdgtreal
from ltfatpy.tools.postpad import postpad
from ltfatpy.comp.comp_sigreshape_post import comp_sigreshape_post


def idgtreal(coef, g, a, M, Ls=None, pt='freqinv'):
    """Inverse discrete Gabor transform for real-valued signals

    - Usage:
        | ``(f, g) = idgtreal(c, g, a, M)``
        | ``(f, g) = idgtreal(c, g, a, M, Ls)``
        | ``(f, g) = idgtreal(c, g, a, M, Ls, pt)``

    - Input parameters:

    :param numpy.ndarray c: Array of coefficients
    :param g: Window function
    :param int a: Length of time shift
    :param int M: Number of channels
    :param int Ls: Length of signal
    :param str pt: 'freqinv' or 'timeinv'. Default is 'freqinv'.
    :type g: str, dict or numpy.ndarray

    - Output parameters:

    :returns: ``(f, g)``
    :rtype: tuple
    :var numpy.ndarray f: signal
    :var numpy.ndarray g: window


    ``idgtreal(c, g, a, M)`` computes the Gabor expansion of the input
    coefficients **c** with respect to the real-valued window **g**, time
    shift **a** and number of channels **M**. **c** is assumed to be the
    positive frequencies of the Gabor expansion of a real-valued signal.

    It must hold that ``c.shape[0] == np.floor(M/2)+1``. Note that since the
    correct number of channels cannot be deduced from the input, ``idgtreal``
    takes an additional parameter as opposed to
    :func:`~ltfatpy.gabor.idgt.idgt`.

    The window **g** may be a vector of numerical values, a text string or a
    dictionary. See the help of :func:`~ltfatpy.gabor.gabwin.gabwin` for more
    details.

    ``idgtreal(c, g, a, M, Ls)`` does as above but cuts or extends **f** to
    length **Ls**.

    ``(f, g) = idgtreal(...)`` outputs the window used in the transform. This
    is useful if the window was generated from a description in a string or
    dictionary.

    For perfect reconstruction, the window used must be a dual window of the
    one used to generate the coefficients.

    If **g** is a row vector, then the output will also be a row vector. If
    **c** is 3-dimensional, then ``idgtreal`` will return a matrix consisting
    of one column vector for each of the TF-planes in **c**.

    See the help on :func:`~ltfatpy.gabor.idgt.idgt` for the precise definition
    of the inverse Gabor transform.

    - Additional parameters

    ``idgtreal``  optionnaly takes a **pt** arguments that can take the
    following values:

        ==========  ===========================================================
        'freqinv'   Compute a ``idgtreal`` using a frequency-invariant phase.
                    This is the default convention described in the help for
                    :func:`~ltfatpy.gabor.dgt.dgt`.

        'timeinv'   Compute a ``idgtreal`` using a time-invariant phase. This
                    convention is typically used in filter bank algorithms.
        ==========  ===========================================================

    - Examples

        The following example demonstrates the basic principles for getting
        perfect reconstruction (short version)::

            >>> from ltfatpy import greasy
            >>> from ltfatpy import dgtreal
            >>> f = greasy()[0]   # Input test signal
            >>> a = 32  # time shift
            >>> M = 64  # frequency shift
            >>> gs = {'name': 'blackman', 'M': 128}  # synthesis window
            >>> # analysis window
            >>> ga = {'name' : ('dual', gs['name']), 'M' : gs['M']}
            >>> (c, Ls) = dgtreal(f, ga, a, M)[0:2]  # analysis
            >>> r = idgtreal(c, gs, a, M, Ls)[0]  # synthesis
            >>> np.linalg.norm(f-r) < 1e-10 # test
            True

    .. seealso::  :func:`~ltfatpy.gabor.idgt.idgt`,
        :func:`~ltfatpy.gabor.gabwin.gabwin`,
        :func:`~ltfatpy.gabor.gabdual.gabdual`, :func:`dwilt`
    """
    if (not isinstance(g, np.ndarray) and not isinstance(g, str) and
       not isinstance(g, dict)):
        raise TypeError('g must be a numpy.array or str or dict.')

    if (isinstance(g, np.ndarray) and g.size < 2):
        raise ValueError('g must be a vector (you probably forgot to supply' +
                         ' the window function as input parameter.)')

    # Define initial value for flags and key/value pairs.
    if coef.ndim < 2:
        raise ValueError('coef must have at least 2 dimensions')
    N = coef.shape[1]
    if coef.ndim > 2:
        W = coef.shape[2]
    else:
        W = 1

    # Make a dummy call to test the input parameters
    Lsmallest = dgtlength(1, a, M)
    M2 = np.floor(M/2)+1

    if M2 != coef.shape[0]:
        mess = ('Mismatch between the specified number of channels ' +
                'and the size of the input coefficients: ' +
                'M2 = {0:f}, coef.shape = {1:s}')
        raise ValueError(mess.format(M2, '%s' % (coef.shape, )))

    L = N * a

    if L % Lsmallest > 0:
        raise ValueError('Invalid size of coefficient array.')

    # Determine the window

    (g, info) = gabwin(g, a, M, L)

    if L < info['gl']:
        raise ValueError('Window is too long.')

    if not np.issubdtype(g.dtype, np.floating):
        raise ValueError('The window must be real-valued.')

    # verify pt
    if pt == 'timeinv':
        pt = 1
    elif pt == 'freqinv':
        pt = 0
    else:
        mes = "pt (" + str(pt) + ") argument should be 'timeinv' or 'freqinv'."
        raise ValueError(mes)

    # Do the actual computation.
    f = comp_isepdgtreal(coef, g, a, M, pt)

    # Cut or extend f to the correct length, if desired.
    if Ls is not None:
        f = postpad(f, Ls)
    else:
        Ls = L
    f = comp_sigreshape_post(f, Ls, 0, (0, W))
    return (f, g)

if __name__ == '__main__':  # pragma: no cover
    import doctest
    doctest.testmod()