1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Module of phaselocking
Ported from ltfat_2.1.0/gabor/phaselock.m
.. moduleauthor:: Florent Jaillet
"""
import numpy as np
def phaselock(c, a):
r"""Phaselock Gabor coefficients
- Usage:
| ``c_out = phaselock(c, a)``
- Input parameters:
:param numpy.ndarray c: non-phaselocked Gabor coefficients
:param int a: Length of time shift
- Output parameters:
:returns: phaselocked Gabor coefficients
:rtype: numpy.ndarray
``phaselock(c, a)`` phaselocks the Gabor coefficients **c**. The
coefficients must have been obtained from a :func:`~ltfatpy.gabor.dgt.dgt`
with parameter **a**.
Phaselocking the coefficients modifies them so as if they were obtained
from a time-invariant Gabor system. A filter bank produces phase locked
coefficients.
Phaselocking of Gabor coefficients corresponds to the following transform:
Consider a signal ``f`` of length ``L`` and define ``N = L/a``.
The output from ``c = phaselock(dgt(f, g, a, M), a)`` is given by
.. L-1
c(m+1,n+1) = sum f(l+1)*exp(-2*pi*i*m*(l-n*a)/M)*conj(g(l-a*n+1)),
l=0
.. math:: c\\left(m+1,n+1\\right)=\\sum_{l=0}^{L-1}f(l+1)
e^{-2\\pi im(l-na)/M}\\overline{g(l-an+1)},
where ``m = 0,..., M-1`` and ``n = 0,..., N-1`` and ``l-a*n`` are computed
modulo ``L``.
.. seealso:: :func:`~ltfatpy.gabor.dgt.dgt`,
:func:`~ltfatpy.gabor.phaseunlock.phaseunlock`,
:func:`symphase`
- References:
:cite:`puc95`
"""
# NOTE: This function doesn't support the parameter lt (lattice type)
# supported by the corresponding octave function and the lattice used is
# seperable (square lattice lt = (0, 1)).
if not isinstance(a, int):
raise(TypeError('a must be an integer'))
M = c.shape[0]
N = c.shape[1]
L = N * a
b = L / M
if b % 1 != 0.:
raise(ValueError('Lattice error. The a parameter is probably '
'incorrect.'))
TimeInd = np.arange(N) * a
FreqInd = np.arange(M)
phase = FreqInd[:, np.newaxis].dot(TimeInd[np.newaxis, :])
phase = np.mod(phase, M)
phase = np.exp(2.*1.j*np.pi*phase/M)
# Handle multisignals
shape = np.array(c.shape)
if shape.shape[0] > 2:
shape[2:] = 1
c_out = c * phase.reshape(shape)
return c_out
|