File: phaselock.py

package info (click to toggle)
python-ltfatpy 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 41,408 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (146 lines) | stat: -rw-r--r-- 4,150 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Module of phaselocking

Ported from ltfat_2.1.0/gabor/phaselock.m

.. moduleauthor:: Florent Jaillet
"""

import numpy as np


def phaselock(c, a):
    r"""Phaselock Gabor coefficients

    - Usage:

        | ``c_out = phaselock(c, a)``

    - Input parameters:

    :param numpy.ndarray c: non-phaselocked Gabor coefficients
    :param int a: Length of time shift

    - Output parameters:

    :returns: phaselocked Gabor coefficients
    :rtype: numpy.ndarray

    ``phaselock(c, a)`` phaselocks the Gabor coefficients **c**. The
    coefficients must have been obtained from a :func:`~ltfatpy.gabor.dgt.dgt`
    with parameter **a**.

    Phaselocking the coefficients modifies them so as if they were obtained
    from a time-invariant Gabor system. A filter bank produces phase locked
    coefficients.

    Phaselocking of Gabor coefficients corresponds to the following transform:

    Consider a signal ``f`` of length ``L`` and define ``N = L/a``.

    The output from ``c = phaselock(dgt(f, g, a, M), a)`` is given by


    ..               L-1
        c(m+1,n+1) = sum f(l+1)*exp(-2*pi*i*m*(l-n*a)/M)*conj(g(l-a*n+1)),
                     l=0

    .. math:: c\\left(m+1,n+1\\right)=\\sum_{l=0}^{L-1}f(l+1)
              e^{-2\\pi im(l-na)/M}\\overline{g(l-an+1)},

    where ``m = 0,..., M-1`` and ``n = 0,..., N-1`` and ``l-a*n`` are computed
    modulo ``L``.

    .. seealso:: :func:`~ltfatpy.gabor.dgt.dgt`,
                 :func:`~ltfatpy.gabor.phaseunlock.phaseunlock`,
                 :func:`symphase`

    - References:
        :cite:`puc95`
    """

    # NOTE: This function doesn't support the parameter lt (lattice type)
    # supported by the corresponding octave function and the lattice used is
    # seperable (square lattice lt = (0, 1)).

    if not isinstance(a, int):
        raise(TypeError('a must be an integer'))

    M = c.shape[0]
    N = c.shape[1]
    L = N * a
    b = L / M

    if b % 1 != 0.:
        raise(ValueError('Lattice error. The a parameter is probably '
                         'incorrect.'))

    TimeInd = np.arange(N) * a
    FreqInd = np.arange(M)

    phase = FreqInd[:, np.newaxis].dot(TimeInd[np.newaxis, :])
    phase = np.mod(phase, M)
    phase = np.exp(2.*1.j*np.pi*phase/M)

    # Handle multisignals
    shape = np.array(c.shape)
    if shape.shape[0] > 2:
        shape[2:] = 1
    c_out = c * phase.reshape(shape)

    return c_out