File: phaseunlock.py

package info (click to toggle)
python-ltfatpy 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 41,408 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (129 lines) | stat: -rw-r--r-- 3,602 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Module of phaseunlocking

Ported from ltfat_2.1.0/gabor/phaseunlock.m

.. moduleauthor:: Florent Jaillet
"""

import numpy as np


def phaseunlock(c, a):
    """Undo phase lock of Gabor coefficients

    - Usage:

        | ``c_out = phaseunlock(c, a)``

    - Input parameters:

    :param numpy.ndarray c: phaselocked Gabor coefficients
    :param int a: Length of time shift

    - Output parameters:

    :returns: non-phaselocked Gabor coefficients
    :rtype: numpy.ndarray

    ``phaseunlock(c, a)`` removes phase locking from the Gabor coefficients
    **c**.
    The coefficient must have been obtained from a
    :func:`~ltfatpy.gabor.dgt.dgt` with parameter **a**.

    Phase locking the coefficients modifies them so as if they were obtained
    from a time-invariant Gabor system. A filter bank produces phase locked
    coefficients.

    .. seealso:: :func:`~ltfatpy.gabor.dgt.dgt`,
                 :func:`~ltfatpy.gabor.phaselock.phaselock`, :func:`symphase`

    - References:
        :cite:`puc95`
    """

    # NOTE: This function doesn't support the parameter lt (lattice type)
    # supported by the corresponding octave function and the lattice used is
    # seperable (square lattice lt = (0, 1)).

    if not isinstance(a, int):
        raise(TypeError('a must be an integer'))

    M = c.shape[0]
    N = c.shape[1]
    L = N * a
    b = L / M

    if b % 1 != 0.:
        raise(ValueError('Lattice error. The a parameter is probably '
                         'incorrect.'))

    TimeInd = np.arange(N) * a
    FreqInd = np.arange(M)

    phase = FreqInd[:, np.newaxis].dot(TimeInd[np.newaxis, :])
    phase = np.mod(phase, M)
    phase = np.exp(-2.*1.j*np.pi*phase/M)

    # Handle multisignals
    shape = np.array(c.shape)
    if shape.shape[0] > 2:
        shape[2:] = 1
    c_out = c * phase.reshape(shape)

    return c_out