1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Module of time-frequency plotting
Ported from ltfat_2.1.0/gabor/tfplot.m
.. moduleauthor:: Florent Jaillet
"""
from __future__ import print_function, division
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
def tfplot(coef, step, yr, fs=None, dynrange=None, normalization='db',
tc=False, clim=None, plottype='image', colorbar=True, display=True,
time='Time', frequency='Frequency', samples='samples',
normalized='normalized'):
r"""Plot coefficient matrix on the TF plane
- Input parameters:
:param numpy.ndarray coef: 2D coefficient array
:param float step: Shift in samples between each column of coefficients
:param numpy.ndarray yr: 2 elements vector containing the lowest and
highest normalized frequency
:param float fs: Sampling rate in Hz of the original signal
:param float dynrange: Limit the dynamical range to dynrange by using a
colormap in the interval [chigh-dynrange, chigh], where chigh is the
highest value in the plot. The default value of None means to not limit
the dynamical range. If both **clim** and **dynrange** are specified,
then **clim** takes precedence.
:param str normalization: String specifying the normalization of the plot,
possible values are listed below
:param bool tc: Time centering: if ``True``, move the beginning of the
signal to the middle of the plot. This is usefull for visualizing the
window functions of the toolbox.
:param tuple clim: Use a colormap ranging from clim[0] to clim[1]. If both
**clim** and **dynrange** are specified, then **clim** takes
precedence.
:param str plottype: String specifying the type of plot, possible values
are listed below
:param bool colorbar: If ``True``, display the colorbar (this is the
default)
:param bool display: If ``True``, display the figure (this is the default).
Using ``display=False`` to avoid displaying the figure is usefull if
you only want to obtain the output for further processing.
:param str time: Text customization: the word denoting time
:param str frequency: Text customization: the word denoting frequency
:param str samples: Text customization: the word denoting samples
:param str normalized: Text customization: the word denoting normalized
- Output parameter:
:returns: The processed image data used in the plotting. Inputting this
data directly to :func:`~matplotlib.pyplot.matshow` or similar
functions will create the plot. This is usefull for custom
post-processing of the image data.
:rtype: numpy.ndarray
``tfplot(coef, step, yr)`` will plot a rectangular coefficient array on the
TF-plane.
``tfplot`` is not meant to be called directly. Instead, it is called by
other plotting routines to give a uniform display format.
Possible values for **normalization**:
============ ==========================================================
``'db'`` Apply :math:`20*\\log_{10}` to the coefficients. This makes
it possible to see very weak phenomena, but it might show
too much noise. A logarithmic scale is more adapted to
perception of sound. This is the default.
``'dbsq'`` Apply :math:`10*\\log_{10}` to the coefficients. Same as
the ``'db'`` option, but assume that the input is already
squared.
``'lin'`` Show the coefficients on a linear scale. This will display
the raw input without any modifications. Only works for
real-valued input.
``'linsq'`` Show the square of the coefficients on a linear scale.
``'linabs'`` Show the absolute value of the coefficients on a linear
scale.
============ ==========================================================
Possible values for **plottype**:
============= ====================================================
``'image'`` Use imshow to display the plot. This is the default.
``'contour'`` Do a contour plot.
``'surf'`` Do a surface plot.
``'pcolor'`` Do a pcolor plot.
============= ====================================================
.. seealso:: :func:`~ltfatpy.gabor.sgram.sgram`,
:func:`~ltfatpy.gabor.plotdgt.plotdgt`,
:func:`~ltfatpy.gabor.plotdgtreal.plotdgtreal`,
:func:`plotwmdct`, :func:`plotdwilt`
"""
if not isinstance(coef, np.ndarray):
raise TypeError('coef must be a 2D numpy.ndarray')
if coef.ndim > 2:
raise ValueError('Input is multidimensional. coef must be a 2D '
'numpy.ndarray')
if coef.ndim < 2:
raise ValueError('coef must be a 2D numpy.ndarray')
M = coef.shape[0]
N = coef.shape[1]
# Apply transformation to coefficients.
if normalization == 'db':
coef = 20. * np.log10(np.abs(coef) + np.finfo(np.float64).tiny)
elif normalization == 'dbsq':
coef = 10. * np.log10(np.abs(coef) + np.finfo(np.float64).tiny)
elif normalization == 'linsq':
coef = np.square(np.abs(coef))
elif normalization == 'linabs':
coef = np.abs(coef)
elif normalization == 'lin':
if not np.isrealobj(coef):
raise ValueError("Complex valued input cannot be plotted using the"
" 'lin' flag. Please use the 'linsq' or 'linabs' "
"flag.")
else:
# coef is returned in the output so we make a copy to avoid
# returning a reference to the data passed in input
coef = coef.copy()
# 'dynrange' parameter is handled by converting it into clim
# clim overrides dynrange, so do nothing if clim is already specified
if dynrange and not clim:
maxclim = np.nanmax(coef)
clim = (maxclim - dynrange, maxclim)
# Handle clim by thresholding and cutting
if clim:
np.clip(coef, clim[0], clim[1], out=coef)
if tc:
xr = np.arange(-np.floor(N/2.), np.floor((N-1)/2)+1) * step
coef = np.fft.fftshift(coef, axes=1)
else:
xr = np.arange(0, N) * step
if display:
if fs:
xr = xr / fs
yr = yr * fs/2
# Convert yr to range of values
yr = np.linspace(yr[0], yr[1], M)
if plottype == 'image':
xstep = xr[1] - xr[0]
ystep = yr[1] - yr[0]
extent = [xr[0] - xstep/2, xr[-1] + xstep/2,
yr[0] - ystep/2, yr[-1] + ystep/2]
if clim:
# Call imshow explicitly with clim. This is necessary for the
# situations where the data is by itself limited (from above
# or below) to within the specified range. Setting clim
# explicitly avoids the colormap moves in the top or bottom.
plt.imshow(coef, extent=extent, aspect='auto',
interpolation='nearest', origin='lower', clim=clim)
else:
plt.imshow(coef, extent=extent, aspect='auto',
interpolation='nearest', origin='lower')
elif plottype == 'contour':
# Note: The matlplotlib contour function doesn't give the exact
# same visual results as in Octave for the same data.
# So we can expect some slight differences when comparing contour
# plots produced by tfplot.
plt.contour(xr, yr, coef, 10)
elif plottype == 'surf':
# Note: The following import is needed to be able to use
# plot_surface
from mpl_toolkits.mplot3d import Axes3D
plt.delaxes()
ax = plt.gcf().add_subplot(111, projection='3d')
ax.azim = -130.
ax.elev = 30.
xgrid, ygrid = np.meshgrid(xr, yr)
ax.plot_surface(xgrid, ygrid, coef, rstride=1, cstride=1,
antialiased=True, linewidth=0, cmap=cm.jet)
# Note: matplotlib doesn't support orthogonal projection,
# so the result doesn't look exactly as in Octave. See:
# http://stackoverflow.com/questions/23840756/ \
# how-to-disable-perspective-in-mplot3d
elif plottype == 'pcolor':
plt.pcolor(xr, yr, coef, edgecolors='k', antialiased=False,
linewidth=1)
plt.axis('tight')
if colorbar:
if plottype == 'surf':
# Note: we can use "plottype in ('contour', 'surf')" in the
# previous test if we want the colorbar in contour plots to
# look more like the one in Octave
mappable = cm.ScalarMappable(cmap=cm.jet)
mappable.set_array(coef)
plt.colorbar(mappable, ax=plt.gca())
else:
plt.colorbar(ax=plt.gca())
if fs:
plt.xlabel(time + ' (s)')
plt.ylabel(frequency + ' (Hz)')
else:
plt.xlabel(time + ' (' + samples + ')')
plt.ylabel(frequency + ' (' + normalized + ')')
return coef
|