File: firwin.py

package info (click to toggle)
python-ltfatpy 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 41,408 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (390 lines) | stat: -rw-r--r-- 14,483 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


""" Module of fir windows calculation

Ported from ltfat_2.1.0/sigproc/firwin.m

.. moduleauthor:: Denis Arrivault
"""

import numpy as np
from numpy.lib.scimath import sqrt as npsqrt

from ltfatpy.sigproc.normalize import normalize


def firwin(name, M=0, x=None, **kwargs):
    r""" Returns a FIR window of length *M* of type *name*.

    - Usage:

        | ``(g, info) = firwin(name, M)``
        | ``(g, info) = firwin(name, M,...)``
        | ``(g, info) = firwin(name, x)``

    - Input parameters:

    :param str name: is the window.
    :param int M: is the length of the window
    :param numpy.ndarray x: is a points vector (default = None)

    - Output parameters:

    :returns: ``(g, info)``
    :rtype: tuple

    :var numpy.ndarray g: window values array
    :var dict info: the information dictionary

    All windows are symmetric and generate zero delay and zero phase
    filters. They can be used for the Wilson and WMDCT transform, except
    when noted otherwise.

    ``firwin(name, x=numpy.array(...))`` where **x** is a vector will sample
    the window definition as the specified points. The normal sampling
    interval for the windows is :math:`-.5< x <.5`.

    In the following PSL means "Peak Sidelobe level", and the main lobe
    width is measured in normalized frequencies.

    If a window **g** forms a "partition of unity" (PU) it means specifically
    that

    .. math::

        g + \\mbox{fftshift}(g) = \\mathbf{1}_L

    A PU can only be formed if the window length is even, but some windows
    may work for odd lengths anyway.

    If a window is the square root of a window that forms a PU, the window
    will generate a tight Gabor frame / orthonormal Wilson/WMDCT basis if
    the number of channels is less than **M**.

    - The windows available are:

        ===========  =========================================================
        'hann'       von Hann window. Forms a PU. The Hann window has a
                     mainlobe with of 8/M, a PSL of -31.5 dB and decay rate
                     of 18 dB/Octave.

        'sine'       Sine window. This is the square root of the Hanning
                     window. The sine window has a mainlobe width of 8/M,
                     a  PSL of -22.3 dB and decay rate of 12 dB/Octave.

                        - Aliases: `'cosine'`, `'sqrthann'`

        'rect'       (Almost) rectangular window. The rectangular window has a
                     mainlobe width of 4/M, a  PSL of -13.3 dB and decay
                     rate of 6 dB/Octave. Forms a PU if the order is odd.

                        - Alias: `'square'`

        'tria'       (Almost) triangular window. Forms a PU.

                        - Alias: `'bartlett'`

        'sqrttria'   Square root of the triangular window.

        'hamming'    Hamming window. Forms a PU that sums to 1.08 instead
                     of 1.0 as usual. The Hamming window has a
                     mainlobe width of 8/M, a  PSL of -42.7 dB and decay
                     rate of 6 dB/Octave. This window should not be used for
                     a Wilson basis, as a reconstruction window cannot be
                     found by `wildual`.

        'blackman'   Blackman window. The Blackman window has a
                     mainlobe width of 12/M, a PSL of -58.1 dB and decay
                     rate of 18 dB/Octave.

        'blackman2'  Alternate Blackman window. This window has a
                     mainlobe width of 12/M, a PSL of -68.24 dB and decay
                     rate of 6 dB/Octave.

        'itersine'   Iterated sine window. Generates an orthonormal
                     Wilson/WMDCT basis. This window is described in
                     Wesfreid and Wickerhauser (1993) and is used in the
                     ogg sound codec.

                        - Alias: `'ogg'`

        'nuttall'    Nuttall window. The Nuttall window has a
                     mainlobe width of 16/M, a PSL of -93.32 dB and decay
                     rate of 18 dB/Octave.
        'nuttall10'  2-term Nuttall window with 1 continuous derivative.

                        - Alias: `'hann'`, `'hanning'`.

        'nuttall01'  2-term Nuttall window with 0 continuous derivatives.
                     This is a slightly improved Hamming window. It has a
                     mainlobe width of 8/M, a  PSL of -43.19 dB and decay
                     rate of 6 dB/Octave.

        'nuttall20'  3-term Nuttall window with 3 continuous derivatives.
                     The window has a mainlobe width of 12/M, a PSL of
                     -46.74 dB and decay rate of 30 dB/Octave.

        'nuttall11'  3-term Nuttall window with 1 continuous derivative.
                     The window has a mainlobe width of 12/M, a PSL of
                     -64.19 dB and decay rate of 18 dB/Octave.
        'nuttall02'  3-term Nuttall window with 0 continuous derivatives.
                     The window has a mainlobe width of 12/M, a PSL of
                     -71.48 dB and decay rate of 6 dB/Octave.

        'nuttall30'  4-term Nuttall window with 5 continuous derivatives.
                     The window has a mainlobe width of 16/M, a PSL of
                     -60.95 dB and decay rate of 42 dB/Octave.

        'nuttall21'  4-term Nuttall window with 3 continuous derivatives.
                     The window has a mainlobe width of 16/M, a PSL of
                     -82.60 dB and decay rate of 30 dB/Octave.

        'nuttall12'  4-term Nuttall window with 1 continuous derivatives.

                        - Alias: `'nuttall'`.

        'nuttall03'  4-term Nuttall window with 0 continuous derivatives.
                     The window has a mainlobe width of 16/M, a PSL of
                     -98.17 dB and decay rate of 6 dB/Octave.
        ===========  =========================================================

    - Additional keywords arguments:

        ``firwin`` understands the following keyword arguments at the end
        of the list of input:

        **shift** = s
             Shift the window by :math:`s` samples. The value can be a
             fractional number.
        **centering** = 'wp' or 'hp'
             Point even output type : whole or half point even.
             Whole point even is the default. It corresponds to a shift
             of :math:`s=0`.
             Half point even is the convention of most Matlab filter
             routines. It corresponds to a shift of :math:`s=-.5`
        **taper** = t
             Extend the window by a flat section in the middle. The
             argument t is the ratio of the rising and falling
             parts as compared to the total length of the
             window. The default value of 1 means no
             tapering. Accepted values lie in the range from 0 to 1.

    Additionally, ``firwin`` accepts flags to normalize the output.
    Please see the help of :py:meth:`~ltfatpy.sigproc.normalize`.
    Default is to use no normalization.
    For filtering in the time-domain, a normalization of `'1'` or `'area'`
    is preferable.

    .. seealso:: :func:`~ltfatpy.fourier.pgauss.pgauss`, :func:`pbspline`,
        :func:`firkaiser`, :func:`~ltfatpy.sigproc.normalize.normalize`

    - References:
        :cite:`opsc89,harris1978,nuttall1981,wesfreid1993`
    """
    info = {}
    g = None
    if not isinstance(name, str):
        raise TypeError("First argument must be a string containing the name" +
                        " of a window")
    if isinstance(M, float):
        M = int(M)
    if not isinstance(M, int):
        raise TypeError("Second argument must be an integer containing the" +
                        " length of the window")
    # Always set to this
    info['isfir'] = True
    # Default values, may be overwritten later in the code
    info['ispu'] = False
    info['issqpu'] = False
    name = name.lower()

    # Define initial value for flags and key/value pairs.
    shift = 0
    if 'shift' in kwargs:
        shift = kwargs['shift']
    if 'centering' in kwargs:
        if kwargs['centering'] == 'hp':
            shift = .5
    taper = 1
    if 'taper' in kwargs:
        if kwargs['taper'] < 1 and kwargs['taper'] >= 0:
            taper = kwargs['taper']

    if M == 0 and x is None:
        return (g, info)

    Xdefined = True

    if x is None:
        # Deal with tapering
        Xdefined = False
        if taper == 0:
            # Window is only tapering, do this and bail out, because subsequent
            # code may fail.
            return (np.ones(M), info)
        # Modify M to fit with tapering
        Morig = M
        M = int(np.round(M * taper))
        Mtaper = Morig - M

        p1 = int(np.round(Mtaper / 2))
        p2 = Mtaper - p1

        # Switch centering if necessary
        if p1 != p2:
            if shift == 0:
                shift = .5
            elif shift == .5:
                shift = 1

        # This is the normally used sampling vector.
        if (M % 2) == 0:  # For even M the sampling interval is [-.5,.5-1/M]
            # Matlab : [0:1/M:.5-1/M,-.5:1/M:-1/M]'
            x = np.r_[0:.5:1/M, -.5:0:1/M]
        else:  # For odd M the sampling interval is [-.5+1/(2M),.5-1/(2M)]
            # Matlab : x = [0:1/M:.5-.5/M,-.5+.5/M:1/M:-1/M]'
            x = np.r_[0:.5:1/M, -.5+.5/M:-.5/M:1/M]

        x = x + shift / M
    else:
        if M != 0 and M != len(x):
            raise ValueError("M should be equel to len(x).")
        M = len(x)

    do_sqrt = False

    if name in {'hanning', 'hann', 'nuttall10'}:
        g = (.5 + .5 * np.cos(2 * np.pi * x))
        info['ispu'] = True
    elif name in {'sine', 'cosine', 'sqrthann'}:
        g = firwin('hanning', M, **kwargs)[0]
        info['issqpu'] = True
        do_sqrt = True
    elif name == 'hamming':
        g = 0.54 + 0.46 * np.cos(2 * np.pi * x)
        # This is the definition taken from the Harris paper
        # elif name is 'hammingacc'
        # g = 25/46 + 21/46 * np.cos(2 * np.pi *x)
    elif name == 'nuttall01':
        g = 0.53836 + 0.46164 * np.cos(2 * np.pi * x)
    elif name in {'square', 'rect'}:
        g = np.asarray(np.abs(x) < .5, dtype='f8')
    elif name in {'tria', 'triangular', 'bartlett'}:
        g = 1.0 - 2.0 * np.abs(x)
        info['ispu'] = True
    elif name == 'sqrttria':
        arg_centering = {}
#         if 'shift' in kwargs:
#             arg_centering['shift'] = kwargs['shift']
        if 'centering' in kwargs:
            arg_centering['centering'] = kwargs['centering']
        g = firwin('tria', M, **arg_centering)[0]
        info['issqpu'] = True
        do_sqrt = True
    # Rounded version of blackman2
    elif name == 'blackman':
        g = 0.42 + 0.5 * np.cos(2 * np.pi * x) + 0.08 * np.cos(4 * np.pi * x)
    elif name == 'blackman2':
        g = 7938/18608 + 9240/18608 * np.cos(2 * np.pi * x) + 1430/18608 * \
            np.cos(4 * np.pi * x)
    elif name in {'nuttall', 'nuttall12'}:
        g = 0.355768 + 0.487396 * np.cos(2 * np.pi * x) + 0.144232 * \
            np.cos(4 * np.pi * x) + 0.012604 * np.cos(6 * np.pi * x)
    elif name in {'itersine', 'ogg'}:
        g = np.sin(np.pi / 2 * np.cos(np.pi * x)**2)
        info['issqpu'] = True
    elif name == 'nuttall20':
        g = 3/8 + 4/8 * np.cos(2 * np.pi * x) + 1/8 * np.cos(4 * np.pi * x)
    elif name == 'nuttall11':
        g = 0.40897 + 0.5 * np.cos(2 * np.pi * x) + 0.09103 * \
            np.cos(4 * np.pi * x)
    elif name == 'nuttall02':
        g = 0.4243801 + 0.4973406 * np.cos(2 * np.pi * x) + 0.0782793 * \
            np.cos(4 * np.pi * x)
    elif name == 'nuttall30':
        g = 10/32 + 15/32 * np.cos(2 * np.pi * x) + 6/32 * \
            np.cos(4 * np.pi * x) + 1/32 * np.cos(6 * np.pi * x)
    elif name == 'nuttall21':
        g = 0.338946 + 0.481973 * np.cos(2 * np.pi * x) + 0.161054 * \
            np.cos(4 * np.pi * x) + 0.018027 * np.cos(6 * np.pi * x)
    elif name == 'nuttall03':
        g = 0.3635819 + 0.4891775 * np.cos(2 * np.pi * x) + 0.1365995 * \
            np.cos(4 * np.pi * x) + 0.0106411 * np.cos(6 * np.pi * x)
    else:
        raise ValueError('Unknown window: ' + name + '.')

    # Force the window to 0 outside (-.5,.5)
    g = g * np.array(np.abs(x) < .5, dtype=int)

    if not Xdefined and taper < 1:
        # Perform the actual tapering.
        g = np.hstack((np.ones(p1), g, np.ones(p2)))
    # Do sqrt if needed.
    if do_sqrt:
        g = npsqrt(g)

    if 'norm' in kwargs:
        g = normalize(g, norm=kwargs['norm'])[0]
#     else:
#         g = normalize(g, norm = 'null')[0]

    return (g, info)

if __name__ == '__main__':  # pragma: no cover
    (g, info) = firwin(name='sine', M=18, centering='wp')
    print(g)
    print(info)