1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
""" Module of fir windows calculation
Ported from ltfat_2.1.0/sigproc/firwin.m
.. moduleauthor:: Denis Arrivault
"""
import numpy as np
from numpy.lib.scimath import sqrt as npsqrt
from ltfatpy.sigproc.normalize import normalize
def firwin(name, M=0, x=None, **kwargs):
r""" Returns a FIR window of length *M* of type *name*.
- Usage:
| ``(g, info) = firwin(name, M)``
| ``(g, info) = firwin(name, M,...)``
| ``(g, info) = firwin(name, x)``
- Input parameters:
:param str name: is the window.
:param int M: is the length of the window
:param numpy.ndarray x: is a points vector (default = None)
- Output parameters:
:returns: ``(g, info)``
:rtype: tuple
:var numpy.ndarray g: window values array
:var dict info: the information dictionary
All windows are symmetric and generate zero delay and zero phase
filters. They can be used for the Wilson and WMDCT transform, except
when noted otherwise.
``firwin(name, x=numpy.array(...))`` where **x** is a vector will sample
the window definition as the specified points. The normal sampling
interval for the windows is :math:`-.5< x <.5`.
In the following PSL means "Peak Sidelobe level", and the main lobe
width is measured in normalized frequencies.
If a window **g** forms a "partition of unity" (PU) it means specifically
that
.. math::
g + \\mbox{fftshift}(g) = \\mathbf{1}_L
A PU can only be formed if the window length is even, but some windows
may work for odd lengths anyway.
If a window is the square root of a window that forms a PU, the window
will generate a tight Gabor frame / orthonormal Wilson/WMDCT basis if
the number of channels is less than **M**.
- The windows available are:
=========== =========================================================
'hann' von Hann window. Forms a PU. The Hann window has a
mainlobe with of 8/M, a PSL of -31.5 dB and decay rate
of 18 dB/Octave.
'sine' Sine window. This is the square root of the Hanning
window. The sine window has a mainlobe width of 8/M,
a PSL of -22.3 dB and decay rate of 12 dB/Octave.
- Aliases: `'cosine'`, `'sqrthann'`
'rect' (Almost) rectangular window. The rectangular window has a
mainlobe width of 4/M, a PSL of -13.3 dB and decay
rate of 6 dB/Octave. Forms a PU if the order is odd.
- Alias: `'square'`
'tria' (Almost) triangular window. Forms a PU.
- Alias: `'bartlett'`
'sqrttria' Square root of the triangular window.
'hamming' Hamming window. Forms a PU that sums to 1.08 instead
of 1.0 as usual. The Hamming window has a
mainlobe width of 8/M, a PSL of -42.7 dB and decay
rate of 6 dB/Octave. This window should not be used for
a Wilson basis, as a reconstruction window cannot be
found by `wildual`.
'blackman' Blackman window. The Blackman window has a
mainlobe width of 12/M, a PSL of -58.1 dB and decay
rate of 18 dB/Octave.
'blackman2' Alternate Blackman window. This window has a
mainlobe width of 12/M, a PSL of -68.24 dB and decay
rate of 6 dB/Octave.
'itersine' Iterated sine window. Generates an orthonormal
Wilson/WMDCT basis. This window is described in
Wesfreid and Wickerhauser (1993) and is used in the
ogg sound codec.
- Alias: `'ogg'`
'nuttall' Nuttall window. The Nuttall window has a
mainlobe width of 16/M, a PSL of -93.32 dB and decay
rate of 18 dB/Octave.
'nuttall10' 2-term Nuttall window with 1 continuous derivative.
- Alias: `'hann'`, `'hanning'`.
'nuttall01' 2-term Nuttall window with 0 continuous derivatives.
This is a slightly improved Hamming window. It has a
mainlobe width of 8/M, a PSL of -43.19 dB and decay
rate of 6 dB/Octave.
'nuttall20' 3-term Nuttall window with 3 continuous derivatives.
The window has a mainlobe width of 12/M, a PSL of
-46.74 dB and decay rate of 30 dB/Octave.
'nuttall11' 3-term Nuttall window with 1 continuous derivative.
The window has a mainlobe width of 12/M, a PSL of
-64.19 dB and decay rate of 18 dB/Octave.
'nuttall02' 3-term Nuttall window with 0 continuous derivatives.
The window has a mainlobe width of 12/M, a PSL of
-71.48 dB and decay rate of 6 dB/Octave.
'nuttall30' 4-term Nuttall window with 5 continuous derivatives.
The window has a mainlobe width of 16/M, a PSL of
-60.95 dB and decay rate of 42 dB/Octave.
'nuttall21' 4-term Nuttall window with 3 continuous derivatives.
The window has a mainlobe width of 16/M, a PSL of
-82.60 dB and decay rate of 30 dB/Octave.
'nuttall12' 4-term Nuttall window with 1 continuous derivatives.
- Alias: `'nuttall'`.
'nuttall03' 4-term Nuttall window with 0 continuous derivatives.
The window has a mainlobe width of 16/M, a PSL of
-98.17 dB and decay rate of 6 dB/Octave.
=========== =========================================================
- Additional keywords arguments:
``firwin`` understands the following keyword arguments at the end
of the list of input:
**shift** = s
Shift the window by :math:`s` samples. The value can be a
fractional number.
**centering** = 'wp' or 'hp'
Point even output type : whole or half point even.
Whole point even is the default. It corresponds to a shift
of :math:`s=0`.
Half point even is the convention of most Matlab filter
routines. It corresponds to a shift of :math:`s=-.5`
**taper** = t
Extend the window by a flat section in the middle. The
argument t is the ratio of the rising and falling
parts as compared to the total length of the
window. The default value of 1 means no
tapering. Accepted values lie in the range from 0 to 1.
Additionally, ``firwin`` accepts flags to normalize the output.
Please see the help of :py:meth:`~ltfatpy.sigproc.normalize`.
Default is to use no normalization.
For filtering in the time-domain, a normalization of `'1'` or `'area'`
is preferable.
.. seealso:: :func:`~ltfatpy.fourier.pgauss.pgauss`, :func:`pbspline`,
:func:`firkaiser`, :func:`~ltfatpy.sigproc.normalize.normalize`
- References:
:cite:`opsc89,harris1978,nuttall1981,wesfreid1993`
"""
info = {}
g = None
if not isinstance(name, str):
raise TypeError("First argument must be a string containing the name" +
" of a window")
if isinstance(M, float):
M = int(M)
if not isinstance(M, int):
raise TypeError("Second argument must be an integer containing the" +
" length of the window")
# Always set to this
info['isfir'] = True
# Default values, may be overwritten later in the code
info['ispu'] = False
info['issqpu'] = False
name = name.lower()
# Define initial value for flags and key/value pairs.
shift = 0
if 'shift' in kwargs:
shift = kwargs['shift']
if 'centering' in kwargs:
if kwargs['centering'] == 'hp':
shift = .5
taper = 1
if 'taper' in kwargs:
if kwargs['taper'] < 1 and kwargs['taper'] >= 0:
taper = kwargs['taper']
if M == 0 and x is None:
return (g, info)
Xdefined = True
if x is None:
# Deal with tapering
Xdefined = False
if taper == 0:
# Window is only tapering, do this and bail out, because subsequent
# code may fail.
return (np.ones(M), info)
# Modify M to fit with tapering
Morig = M
M = int(np.round(M * taper))
Mtaper = Morig - M
p1 = int(np.round(Mtaper / 2))
p2 = Mtaper - p1
# Switch centering if necessary
if p1 != p2:
if shift == 0:
shift = .5
elif shift == .5:
shift = 1
# This is the normally used sampling vector.
if (M % 2) == 0: # For even M the sampling interval is [-.5,.5-1/M]
# Matlab : [0:1/M:.5-1/M,-.5:1/M:-1/M]'
x = np.r_[0:.5:1/M, -.5:0:1/M]
else: # For odd M the sampling interval is [-.5+1/(2M),.5-1/(2M)]
# Matlab : x = [0:1/M:.5-.5/M,-.5+.5/M:1/M:-1/M]'
x = np.r_[0:.5:1/M, -.5+.5/M:-.5/M:1/M]
x = x + shift / M
else:
if M != 0 and M != len(x):
raise ValueError("M should be equel to len(x).")
M = len(x)
do_sqrt = False
if name in {'hanning', 'hann', 'nuttall10'}:
g = (.5 + .5 * np.cos(2 * np.pi * x))
info['ispu'] = True
elif name in {'sine', 'cosine', 'sqrthann'}:
g = firwin('hanning', M, **kwargs)[0]
info['issqpu'] = True
do_sqrt = True
elif name == 'hamming':
g = 0.54 + 0.46 * np.cos(2 * np.pi * x)
# This is the definition taken from the Harris paper
# elif name is 'hammingacc'
# g = 25/46 + 21/46 * np.cos(2 * np.pi *x)
elif name == 'nuttall01':
g = 0.53836 + 0.46164 * np.cos(2 * np.pi * x)
elif name in {'square', 'rect'}:
g = np.asarray(np.abs(x) < .5, dtype='f8')
elif name in {'tria', 'triangular', 'bartlett'}:
g = 1.0 - 2.0 * np.abs(x)
info['ispu'] = True
elif name == 'sqrttria':
arg_centering = {}
# if 'shift' in kwargs:
# arg_centering['shift'] = kwargs['shift']
if 'centering' in kwargs:
arg_centering['centering'] = kwargs['centering']
g = firwin('tria', M, **arg_centering)[0]
info['issqpu'] = True
do_sqrt = True
# Rounded version of blackman2
elif name == 'blackman':
g = 0.42 + 0.5 * np.cos(2 * np.pi * x) + 0.08 * np.cos(4 * np.pi * x)
elif name == 'blackman2':
g = 7938/18608 + 9240/18608 * np.cos(2 * np.pi * x) + 1430/18608 * \
np.cos(4 * np.pi * x)
elif name in {'nuttall', 'nuttall12'}:
g = 0.355768 + 0.487396 * np.cos(2 * np.pi * x) + 0.144232 * \
np.cos(4 * np.pi * x) + 0.012604 * np.cos(6 * np.pi * x)
elif name in {'itersine', 'ogg'}:
g = np.sin(np.pi / 2 * np.cos(np.pi * x)**2)
info['issqpu'] = True
elif name == 'nuttall20':
g = 3/8 + 4/8 * np.cos(2 * np.pi * x) + 1/8 * np.cos(4 * np.pi * x)
elif name == 'nuttall11':
g = 0.40897 + 0.5 * np.cos(2 * np.pi * x) + 0.09103 * \
np.cos(4 * np.pi * x)
elif name == 'nuttall02':
g = 0.4243801 + 0.4973406 * np.cos(2 * np.pi * x) + 0.0782793 * \
np.cos(4 * np.pi * x)
elif name == 'nuttall30':
g = 10/32 + 15/32 * np.cos(2 * np.pi * x) + 6/32 * \
np.cos(4 * np.pi * x) + 1/32 * np.cos(6 * np.pi * x)
elif name == 'nuttall21':
g = 0.338946 + 0.481973 * np.cos(2 * np.pi * x) + 0.161054 * \
np.cos(4 * np.pi * x) + 0.018027 * np.cos(6 * np.pi * x)
elif name == 'nuttall03':
g = 0.3635819 + 0.4891775 * np.cos(2 * np.pi * x) + 0.1365995 * \
np.cos(4 * np.pi * x) + 0.0106411 * np.cos(6 * np.pi * x)
else:
raise ValueError('Unknown window: ' + name + '.')
# Force the window to 0 outside (-.5,.5)
g = g * np.array(np.abs(x) < .5, dtype=int)
if not Xdefined and taper < 1:
# Perform the actual tapering.
g = np.hstack((np.ones(p1), g, np.ones(p2)))
# Do sqrt if needed.
if do_sqrt:
g = npsqrt(g)
if 'norm' in kwargs:
g = normalize(g, norm=kwargs['norm'])[0]
# else:
# g = normalize(g, norm = 'null')[0]
return (g, info)
if __name__ == '__main__': # pragma: no cover
(g, info) = firwin(name='sine', M=18, centering='wp')
print(g)
print(info)
|