1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
""" Module of Root Mean Square calculation
Ported from ltfat_2.1.0/sigproc/rms.m
.. moduleauthor:: Denis Arrivault
"""
from __future__ import print_function, division
import numpy as np
from numpy import linalg as LA
from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post
def rms(f, ac=False, dim=None):
r"""RMS value of signal
- Usage:
| ``y = rms(f)``
- Input parameters:
:param numpy.ndarray f: Input signal
:param bool ac: ``True`` if calculation should only consider the AC
component of the signal (i.e. the mean is removed). ``False`` by
default.
:param int dim: Dimension along which norm is applied (first non-singleton
dimension as default)
- Output parameters:
:returns: RMS value
:rtype: float
``rms(f)`` computes the RMS (Root Mean Square) value of a finite sampled
signal sampled at a uniform sampling rate. This is a vector norm
equal to the :math:`l^2` averaged by the length of the signal.
If the input is a matrix or ND-array, the RMS is computed along the
first (non-singleton) dimension, and a vector of values is returned.
The RMS value of a signal ``f`` of length ``N`` is computed by
.. N
rms(f) = 1/sqrt(N) ( sum |f(n)|^2 )^(1/2)
n=1
.. math::
rms(f) = \\frac{1}{\\sqrt N} \\left( \\sum_{n=1}^N |f(n)|^2
\\right)^{\\frac{1}{2}}
"""
# It is better to use 'norm' instead of explicitly summing the squares, as
# norm (hopefully) attempts to avoid numerical overflow.
(f, L, _unused, W, dim, permutedsize, order) = \
assert_sigreshape_pre(f, dim=dim)
permutedshape = (1,) + permutedsize[1:]
y = np.zeros(permutedshape)
if W == 1:
if ac:
y[0] = LA.norm(f[:, 0] - np.mean(f[:, 0])) / np.sqrt(L)
else:
y[0] = LA.norm(f[:, 0]) / np.sqrt(L)
else:
if ac:
for ii in range(W):
y[0, ii] = LA.norm(f[:, ii] - np.mean(f[:, ii])) / np.sqrt(L)
else:
for ii in range(W):
y[0, ii] = LA.norm(f[:, ii]) / np.sqrt(L)
y = assert_sigreshape_post(y, dim, permutedshape, order)
return y
|