File: rms.py

package info (click to toggle)
python-ltfatpy 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 41,408 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (134 lines) | stat: -rw-r--r-- 4,065 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


""" Module of Root Mean Square calculation

Ported from ltfat_2.1.0/sigproc/rms.m

.. moduleauthor:: Denis Arrivault
"""

from __future__ import print_function, division

import numpy as np
from numpy import linalg as LA

from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post


def rms(f, ac=False, dim=None):
    r"""RMS value of signal

    - Usage:

        | ``y = rms(f)``

    - Input parameters:

    :param numpy.ndarray f: Input signal
    :param bool ac: ``True`` if calculation should only consider the AC
        component of the signal (i.e. the mean is removed). ``False`` by
        default.
    :param int dim: Dimension along which norm is applied (first non-singleton
        dimension as default)

    - Output parameters:

    :returns: RMS value
    :rtype: float

    ``rms(f)`` computes the RMS (Root Mean Square) value of a finite sampled
    signal sampled at a uniform sampling rate. This is a vector norm
    equal to the :math:`l^2` averaged by the length of the signal.

    If the input is a matrix or ND-array, the RMS is computed along the
    first (non-singleton) dimension, and a vector of values is returned.

    The RMS value of a signal ``f`` of length ``N`` is computed by

    ..                       N
       rms(f) = 1/sqrt(N) ( sum |f(n)|^2 )^(1/2)
                            n=1

    .. math::
        rms(f) = \\frac{1}{\\sqrt N} \\left( \\sum_{n=1}^N |f(n)|^2
        \\right)^{\\frac{1}{2}}

    """
    # It is better to use 'norm' instead of explicitly summing the squares, as
    # norm (hopefully) attempts to avoid numerical overflow.

    (f, L, _unused, W, dim, permutedsize, order) = \
        assert_sigreshape_pre(f, dim=dim)

    permutedshape = (1,) + permutedsize[1:]
    y = np.zeros(permutedshape)
    if W == 1:
        if ac:
            y[0] = LA.norm(f[:, 0] - np.mean(f[:, 0])) / np.sqrt(L)
        else:
            y[0] = LA.norm(f[:, 0]) / np.sqrt(L)
    else:
        if ac:
            for ii in range(W):
                y[0, ii] = LA.norm(f[:, ii] - np.mean(f[:, ii])) / np.sqrt(L)
        else:
            for ii in range(W):
                y[0, ii] = LA.norm(f[:, ii]) / np.sqrt(L)

    y = assert_sigreshape_post(y, dim, permutedshape, order)
    return y