1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Test of the assert_sigreshape_pre function
.. moduleauthor:: Denis Arrivault
"""
from __future__ import print_function, division
import unittest
import random
import numpy as np
from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre as asp
import functools
class TestAssertSigReshapePre(unittest.TestCase):
# Called before the tests.
def setUp(self):
print("Start TestAssertSigReshapePre")
# Called after the tests.
def tearDown(self):
print("Test done")
def test_default(self):
"""Basic usual cases"""
L = random.randint(5, 200)
f = np.arange(0, L, dtype=np.float64)
(g, L, Ls, W, dim, _permutedshape, _order) = asp(f)
mess = "\nL = {0:d}, Ls = {1:d}, W = {2:d}, dim = {3:d}, g.shape = "
mess += str(g.shape) + ", f.shape = " + str(f.shape)
mess = mess.format(L, Ls, W, dim)
np.testing.assert_array_equal(f, g.reshape(L), mess)
self.assertEqual(L, L, mess)
self.assertEqual(W, 1, mess)
self.assertEqual(dim, 0, mess)
f = f.reshape(L, 1)
(g, L, Ls, W, dim, _permutedshape, _order) = asp(f)
mess = "\nL = {0:d}, Ls = {1:d}, W = {2:d}, dim = {3:d}, g.shape = "
mess += str(g.shape) + ", f.shape = " + str(f.shape)
mess = mess.format(L, Ls, W, dim)
np.testing.assert_array_equal(f, g, mess)
self.assertEqual(L, L, mess)
self.assertEqual(W, 1, mess)
self.assertEqual(dim, 0, mess)
def test_list(self):
"""Basic signal in a list"""
L = random.randint(5, 200)
f = [x for x in range(0, L)]
(g, L, Ls, W, dim, _permutedshape, _order) = asp(f)
mess = "\nL = {0:d}, Ls = {1:d}, W = {2:d}, dim = {3:d}, g.shape = "
mess += str(g.shape) + ", len(f) = " + str(len(f))
mess = mess.format(L, Ls, W, dim)
np.testing.assert_array_equal(f, g.reshape(L), mess)
self.assertEqual(L, L, mess)
self.assertEqual(W, 1, mess)
self.assertEqual(dim, 0, mess)
self.assertRaises(TypeError, asp, {"a": 1})
self.assertRaises(TypeError, asp, f, L, (1, 0))
self.assertRaises(TypeError, asp, f, L, -4)
self.assertRaises(TypeError, asp, f, 5.5)
def test_twodim(self):
"""Many channels signals"""
shapef = tuple([random.randint(5, 20) for _ in range(2)])
L = functools.reduce(lambda x, y: x * y, shapef)
f = np.arange(0, L, dtype=np.complex128)
f = f.reshape(shapef)
(g, L, Ls, W, dim, _permutedshape, _order) = asp(f)
mess = "\nL = {0:d}, Ls = {1:d}, W = {2:d}, dim = {3:d}, g.shape = "
mess += str(g.shape) + ", f.shape = " + str(f.shape)
mess = mess.format(L, Ls, W, dim)
np.testing.assert_array_equal(f, g, mess)
self.assertEqual(L, L, mess)
self.assertEqual(W, shapef[1], mess)
self.assertEqual(dim, 0, mess)
L = random.randint(5, 200)
f = np.arange(0, L, dtype=np.float64)
fcol = f.reshape((1, L))
(g, L, Ls, W, dim, _permutedshape, _order) = asp(fcol)
mess = "\nL = {0:d}, Ls = {1:d}, W = {2:d}, dim = {3:d}, g.shape = "
mess += str(g.shape) + ", f.shape = " + str(fcol.shape)
mess = mess.format(L, Ls, W, dim)
np.testing.assert_array_equal(f, g.squeeze(), mess)
self.assertEqual(L, L, mess)
self.assertEqual(W, 1, mess)
self.assertEqual(dim, 1, mess)
if __name__ == "__main__":
suite = unittest.TestLoader().loadTestsFromTestCase(TestAssertSigReshapePre)
unittest.TextTestRunner(verbosity=2).run(suite)
|