File: test_assert_sigreshape_pre.py

package info (click to toggle)
python-ltfatpy 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 41,408 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (150 lines) | stat: -rw-r--r-- 5,369 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Test of the assert_sigreshape_pre function

.. moduleauthor:: Denis Arrivault
"""

from __future__ import print_function, division

import unittest
import random
import numpy as np
from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre as asp
import functools


class TestAssertSigReshapePre(unittest.TestCase):

    # Called before the tests.
    def setUp(self):
        print("Start TestAssertSigReshapePre")

    # Called after the tests.
    def tearDown(self):
        print("Test done")

    def test_default(self):
        """Basic usual cases"""
        L = random.randint(5, 200)
        f = np.arange(0, L, dtype=np.float64)
        (g, L, Ls, W, dim, _permutedshape, _order) = asp(f)
        mess = "\nL = {0:d}, Ls = {1:d}, W = {2:d}, dim = {3:d}, g.shape = "
        mess += str(g.shape) + ", f.shape = " + str(f.shape)
        mess = mess.format(L, Ls, W, dim)
        np.testing.assert_array_equal(f, g.reshape(L), mess)
        self.assertEqual(L, L, mess)
        self.assertEqual(W, 1, mess)
        self.assertEqual(dim, 0, mess)

        f = f.reshape(L, 1)
        (g, L, Ls, W, dim, _permutedshape, _order) = asp(f)
        mess = "\nL = {0:d}, Ls = {1:d}, W = {2:d}, dim = {3:d}, g.shape = "
        mess += str(g.shape) + ", f.shape = " + str(f.shape)
        mess = mess.format(L, Ls, W, dim)
        np.testing.assert_array_equal(f, g, mess)
        self.assertEqual(L, L, mess)
        self.assertEqual(W, 1, mess)
        self.assertEqual(dim, 0, mess)

    def test_list(self):
        """Basic signal in a list"""
        L = random.randint(5, 200)
        f = [x for x in range(0, L)]
        (g, L, Ls, W, dim, _permutedshape, _order) = asp(f)
        mess = "\nL = {0:d}, Ls = {1:d}, W = {2:d}, dim = {3:d}, g.shape = "
        mess += str(g.shape) + ", len(f) = " + str(len(f))
        mess = mess.format(L, Ls, W, dim)
        np.testing.assert_array_equal(f, g.reshape(L), mess)
        self.assertEqual(L, L, mess)
        self.assertEqual(W, 1, mess)
        self.assertEqual(dim, 0, mess)
        self.assertRaises(TypeError, asp, {"a": 1})
        self.assertRaises(TypeError, asp, f, L, (1, 0))
        self.assertRaises(TypeError, asp, f, L, -4)
        self.assertRaises(TypeError, asp, f, 5.5)

    def test_twodim(self):
        """Many channels signals"""
        shapef = tuple([random.randint(5, 20) for _ in range(2)])
        L = functools.reduce(lambda x, y: x * y, shapef)
        f = np.arange(0, L, dtype=np.complex128)
        f = f.reshape(shapef)
        (g, L, Ls, W, dim, _permutedshape, _order) = asp(f)
        mess = "\nL = {0:d}, Ls = {1:d}, W = {2:d}, dim = {3:d}, g.shape = "
        mess += str(g.shape) + ", f.shape = " + str(f.shape)
        mess = mess.format(L, Ls, W, dim)
        np.testing.assert_array_equal(f, g, mess)
        self.assertEqual(L, L, mess)
        self.assertEqual(W, shapef[1], mess)
        self.assertEqual(dim, 0, mess)
        L = random.randint(5, 200)
        f = np.arange(0, L, dtype=np.float64)
        fcol = f.reshape((1, L))
        (g, L, Ls, W, dim, _permutedshape, _order) = asp(fcol)
        mess = "\nL = {0:d}, Ls = {1:d}, W = {2:d}, dim = {3:d}, g.shape = "
        mess += str(g.shape) + ", f.shape = " + str(fcol.shape)
        mess = mess.format(L, Ls, W, dim)
        np.testing.assert_array_equal(f, g.squeeze(), mess)
        self.assertEqual(L, L, mess)
        self.assertEqual(W, 1, mess)
        self.assertEqual(dim, 1, mess)


if __name__ == "__main__":
    suite = unittest.TestLoader().loadTestsFromTestCase(TestAssertSigReshapePre)
    unittest.TextTestRunner(verbosity=2).run(suite)