1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Test of the comp_sigreshape_pre and comp_sigreshape_post functions
.. moduleauthor:: Denis Arrivault
"""
from __future__ import print_function, division
import unittest
import random
import numpy as np
from ltfatpy.comp.comp_sigreshape_pre import comp_sigreshape_pre as cpre
from ltfatpy.comp.comp_sigreshape_post import comp_sigreshape_post as cpost
import functools
class TestCompSigReshape(unittest.TestCase):
# Called before the tests.
def setUp(self):
print("Start TestCompSigReshape")
# Called after the tests.
def tearDown(self):
print("Test done")
def test_default(self):
self.assertRaises(ValueError, cpre, "toto", 10)
self.assertRaises(ValueError, cpre, np.empty((0,)), 10)
self.assertRaises(ValueError, cpre, np.ones((10, 10, 2)), 1)
def test_onedim(self):
"""One channel"""
L = random.randint(5, 200)
f = np.arange(0, L, dtype=np.float64)
(fin, fl, W, wasrow, remembershape) = cpre(f, 0)
fres = cpost(fin, fl, wasrow, remembershape)
mess = "\nfl = {:d}, W = {:d}, wasrow = {:d},remembershape.shape = "
mess += str(remembershape) + ", f.shape = " + str(f.shape)
mess += ", fres.shape = " + str(fres.shape)
mess = mess.format(fl, W, wasrow)
np.testing.assert_array_equal(f, fres, mess)
L = random.randint(5, 200)
f = np.arange(0, L, dtype=np.float64)
f.resize((1, L))
(fin, fl, W, wasrow, remembershape) = cpre(f, 0)
fres = cpost(fin, fl, wasrow, remembershape)
mess = "\nfl = {:d}, W = {:d}, wasrow = {:d},remembershape.shape = "
mess += str(remembershape) + ", f.shape = " + str(f.shape)
mess += ", fres.shape = " + str(fres.shape)
mess = mess.format(fl, W, wasrow)
np.testing.assert_array_equal(f, fres, mess)
def test_twodim(self):
"""Many channels signals"""
shapef = tuple([random.randint(5, 20) for _ in range(2)])
L = functools.reduce(lambda x, y: x * y, shapef)
f = np.arange(0, L, dtype=np.complex128)
f = f.reshape(shapef)
(fin, fl, W, wasrow, remembershape) = cpre(f, 1)
fres = cpost(fin, fl, wasrow, remembershape)
mess = "\nfl = {:d}, W = {:d}, wasrow = {:d},remembershape.shape = "
mess += str(remembershape) + ", f.shape = " + str(f.shape)
mess += ", fres.shape = " + str(fres.shape)
mess = mess.format(fl, W, wasrow)
np.testing.assert_array_equal(f, fres, mess)
def test_multidim(self):
"""Multidimensionnal signals"""
shapef = tuple([random.randint(5, 20) for _ in range(4)])
L = np.prod(shapef)
f = np.arange(0, L, dtype=np.complex128)
f = f.reshape(shapef)
(fin, fl, W, wasrow, remembershape) = cpre(f, 5)
fres = cpost(fin, fl, wasrow, remembershape)
mess = "\nfl = {:d}, W = {:.2f}, wasrow = {:d},remembershape.shape = "
mess += str(remembershape) + ", f.shape = " + str(f.shape)
mess += ", fres.shape = " + str(fres.shape)
mess = mess.format(fl, W, wasrow)
np.testing.assert_array_equal(f, fres, mess)
if __name__ == "__main__":
suite = unittest.TestLoader().loadTestsFromTestCase(TestCompSigReshape)
unittest.TextTestRunner(verbosity=2).run(suite)
|