1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Test of the middlepad function
.. moduleauthor:: Florent Jaillet
"""
from __future__ import print_function, division
import unittest
import numpy as np
from numpy.testing import assert_array_equal
from copy import deepcopy
from ltfatpy.fourier.middlepad import middlepad
class TestMiddlepad(unittest.TestCase):
# Called before the tests.
def setUp(self):
print('\nStart TestMiddlepad')
# Called after the tests.
def tearDown(self):
print('Test done')
def test_exceptions(self):
"""Check that the right exceptions are raised when expected
"""
f = np.random.random((3,))
# L must be an integer, check that we get an error if not
self.assertRaises(TypeError, middlepad, f, 'test')
self.assertRaises(TypeError, middlepad, f, 3.4)
# L must be larger than 0, check that we get an error if not
self.assertRaises(ValueError, middlepad, f, -2)
def test_known(self):
"""Checking middlepad on some known results taken from Octave
"""
inputs = {}
N_val = (1, 1, 3, 4, 3, 4, 7, 8, 7, 8)
L_val = (2, 3, 7, 7, 8, 8, 3, 3, 4, 4)
centerings = ('wp', 'hp')
# Values of h as returned in Octave with ltfat 2.1.0
all_h_oct = ((np.array([1., 0.]),
np.array([1., 0., 0.]),
np.array([1., 2., 0., 0., 0., 0., 3.]),
np.array([1., 2., 1.5, 0., 0., 1.5, 4.]),
np.array([1., 2., 0., 0., 0., 0., 0., 3.]),
np.array([1., 2., 1.5, 0., 0., 0., 1.5, 4.]),
np.array([1., 2., 7.]),
np.array([1., 2., 8.]),
np.array([1., 2., 4.5, 7.]),
np.array([1., 2., 5., 8.])),
(np.array([0.5, 0.5]),
np.array([0.5, 0., 0.5]),
np.array([1., 1., 0., 0., 0., 1., 3.]),
np.array([1., 2., 0., 0., 0., 3., 4.]),
np.array([1., 1., 0., 0., 0., 0., 1., 3.]),
np.array([1., 2., 0., 0., 0., 0., 3., 4.]),
np.array([1., 4., 7.]),
np.array([1., 4.5, 8.]),
np.array([1., 2., 6., 7.]),
np.array([1., 2., 7., 8.])))
for centering, h_oct in zip(centerings, all_h_oct):
inputs['centering'] = centering
for N, L, h_ref in zip(N_val, L_val, h_oct):
inputs['L'] = L
inputs['f'] = np.arange(1., float(N+1))
h = middlepad(**inputs)
msg = ('Wrong value in putput of middlepad with inputs ' +
str(inputs))
assert_array_equal(h_ref, h, msg)
def test_known_shapes(self):
"""Check that middlepad resturns the same shapes as in Octave
"""
shapes_in = ((1, 1), (2, 1), (1, 2), (1, 2, 3), (1, 1, 2),
(1, 1, 2, 3))
shapes_out = ((3, 1), (3, 1), (1, 3), (3, 2, 3), (1, 1, 3),
(3, 1, 2, 3))
inputs = {}
inputs['L'] = 3
for shape_in, shape_out in zip(shapes_in, shapes_out):
inputs['f'] = np.ones(shape_in)
h = middlepad(**inputs)
msg = ('Wrong shape in the output of middlepad with inputs ' +
str(inputs))
self.assertEqual(shape_out, h.shape, msg)
def test_default_val(self):
"""Check that expected default value is used
"""
# check that default value for centering is 'wp'
inputs_def = {}
N = 3
inputs_def['f'] = np.ones((N,))
inputs_def['L'] = N+1
h_def = middlepad(**inputs_def)
inputs = deepcopy(inputs_def)
inputs['centering'] = 'wp'
h = middlepad(**inputs)
msg = ('Wrong default value for centering when coparing inputs ' +
str(inputs_def) + ' and ' + str(inputs))
assert_array_equal(h_def, h, msg)
def test_param_dim(self):
"""Check that dim is taken into account
"""
inputs = {}
N = 3
M = 4
inputs['L'] = 5
inputs['f'] = np.ones((N, M))
inputs['dim'] = 0
h = middlepad(**inputs)
msg = 'middlepad is misusing dim with inputs ' + str(inputs)
self.assertEqual(h.shape, (inputs['L'], M), msg)
inputs['dim'] = 1
h = middlepad(**inputs)
msg = 'middlepad is misusing dim with inputs ' + str(inputs)
self.assertEqual(h.shape, (N, inputs['L']), msg)
if __name__ == '__main__':
suite = unittest.TestLoader().loadTestsFromTestCase(TestMiddlepad)
unittest.TextTestRunner(verbosity=2).run(suite)
|