1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Test of the groupthresh function
.. moduleauthor:: Florent Jaillet
"""
from __future__ import print_function, division
import unittest
import numpy as np
from numpy.testing import assert_array_equal
from copy import deepcopy
from ltfatpy.sigproc.groupthresh import groupthresh
from ltfatpy.tests.datasets.read_ref_mat import read_ref_mat
from ltfatpy.tests.datasets.get_dataset_path import get_dataset_path
# NOTE: The reference values used in the tests correspond to results
# obtained with Octave using ltfat 2.1.0
class TestGroupthresh(unittest.TestCase):
# Called before the tests.
def setUp(self):
print('\nStart TestGroupthresh')
# Called after the tests.
def tearDown(self):
print('Test done')
def test_known(self):
"""Checking groupthresh on some known results taken from Octave
"""
filename = get_dataset_path('groupthresh_ref.mat')
data = read_ref_mat(filename)
for inputs, outputs in data:
# lamb is incorreclty converted to an int for certain values by
# read_ref_mat, so we convert it back to float as needed by
# groupthresh
inputs['lamb'] = float(inputs['lamb'])
out = groupthresh(**inputs)
msg = ('Wrong value in output of groupthresh with inputs ' +
str(inputs))
assert_array_equal(out, outputs[0], msg)
def test_shape(self):
"""Check that input and output shapes match
"""
shape = (4, 3)
thresh_types = ('hard', 'wiener', 'soft')
group_types = ('group', 'elite')
dims = (0, 1)
inputs = {}
inputs['xi'] = np.random.random(shape)
inputs['lamb'] = 0.5
for dim in dims:
inputs['dim'] = dim
for group_type in group_types:
inputs['group_type'] = group_type
for thresh_type in thresh_types:
inputs['thresh_type'] = thresh_type
xo = groupthresh(**inputs)
msg = ('Wrong shape in output xo of groupthresh with '
'inputs ' + str(inputs))
self.assertEqual(xo.shape, shape, msg)
def test_default_param(self):
"""Check that the default value for thresh_type is right
"""
inputs_def = {}
inputs_def['xi'] = np.random.random((4, 3))
inputs_def['lamb'] = 0.5
xo_def = groupthresh(**inputs_def)
inputs_group = deepcopy(inputs_def)
inputs_group['dim'] = 1
xo_group = groupthresh(**inputs_group)
msg = ('Wrong default value for dim in groupthresh when '
'comparing results with inputs ' + str(inputs_def) + ' and ' +
str(inputs_group))
assert_array_equal(xo_def, xo_group, msg)
inputs_group = deepcopy(inputs_def)
inputs_group['group_type'] = 'group'
xo_group = groupthresh(**inputs_group)
msg = ('Wrong default value for group_type in groupthresh when '
'comparing results with inputs ' + str(inputs_def) + ' and ' +
str(inputs_group))
assert_array_equal(xo_def, xo_group, msg)
inputs_hard = deepcopy(inputs_def)
inputs_hard['thresh_type'] = 'soft'
xo_hard = groupthresh(**inputs_hard)
msg = ('Wrong default value for thresh_type in groupthresh when '
'comparing results with inputs ' + str(inputs_def) + ' and ' +
str(inputs_hard))
assert_array_equal(xo_def, xo_hard, msg)
def test_type(self):
"""Check that the type for lamb is correctly checked
"""
xi = np.ones((4, 3))
# test with lamb of wrong type (str, when float is expected)
lamb = 'test'
self.assertRaises(TypeError, groupthresh, xi, lamb)
# test with lamb of wrong type (int, when float is expected)
lamb = 1
self.assertRaises(TypeError, groupthresh, xi, lamb)
if __name__ == '__main__':
suite = unittest.TestLoader().loadTestsFromTestCase(TestGroupthresh)
unittest.TextTestRunner(verbosity=2).run(suite)
|