File: test_largestn.py

package info (click to toggle)
python-ltfatpy 1.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 41,408 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (145 lines) | stat: -rw-r--r-- 4,853 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Test of the largestn function

.. moduleauthor:: Florent Jaillet
"""

from __future__ import print_function, division

import unittest
import numpy as np
from numpy.testing import assert_array_equal
from copy import deepcopy

from ltfatpy.sigproc.largestn import largestn
from ltfatpy.tests.datasets.read_ref_mat import read_ref_mat
from ltfatpy.tests.datasets.get_dataset_path import get_dataset_path

# NOTE: The reference values used in the tests correspond to results
# obtained with Octave using ltfat 2.1.0


class TestLargestn(unittest.TestCase):

    # Called before the tests.
    def setUp(self):
        print('\nStart TestLargestn')

    # Called after the tests.
    def tearDown(self):
        print('Test done')

    def test_known(self):
        """Checking largestn on some known results taken from Octave
        """
        filename = get_dataset_path('largestn_ref.mat')
        data = read_ref_mat(filename)
        for inputs, outputs in data:
            xo, Nout = largestn(**inputs)
            msg = ('Wrong value in output xo of largestn with inputs ' +
                   str(inputs))
            assert_array_equal(xo, outputs[0], msg)
            msg = ('Wrong value in output Nout of largestn with inputs ' +
                   str(inputs))
            self.assertEqual(Nout, outputs[1], msg)

    def test_shape(self):
        """Check that input and output shapes match
        """
        shapes = ((4,), (4, 3), (4, 3, 2))
        thresh_types = ('hard', 'wiener', 'soft')
        inputs = {}
        inputs['N'] = 2
        for shape in shapes:
            inputs['xi'] = np.random.random(shape)
            for thresh_type in thresh_types:
                inputs['thresh_type'] = thresh_type
                xo = largestn(**inputs)[0]
                msg = ('Wrong shape in output xo of largestn with inputs ' +
                       str(inputs))
                self.assertEqual(xo.shape, shape, msg)

    def test_default_param(self):
        """Check that the default value for thresh_type is right
        """
        inputs_def = {}
        inputs_def['xi'] = np.random.random((4, 3))
        inputs_def['N'] = 5
        inputs_hard = deepcopy(inputs_def)
        inputs_hard['thresh_type'] = 'hard'
        xo_def = largestn(**inputs_def)[0]
        xo_hard = largestn(**inputs_hard)[0]
        msg = ('Wrong default value for thresh_type in largestn when '
               'comparing results with inputs ' + str(inputs_def) + ' and ' +
               str(inputs_hard))
        assert_array_equal(xo_def, xo_hard, msg)

    def test_type(self):
        """Check that the type for N is correctly checked
        """
        xi = np.ones((4, 3))
        # test with N of wrong type (str, when int is expected)
        N = 'test'
        self.assertRaises(TypeError, largestn, xi, N)
        # test with N of wrong type (float, when int is expected)
        N = 1.
        self.assertRaises(TypeError, largestn, xi, N)

if __name__ == '__main__':
    suite = unittest.TestLoader().loadTestsFromTestCase(TestLargestn)
    unittest.TextTestRunner(verbosity=2).run(suite)