File: reassign.c

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (304 lines) | stat: -rw-r--r-- 8,559 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#include "ltfat.h"
#include "ltfat_types.h"
#include "reassign_typeconstant.h"


LTFAT_EXTERN void
LTFAT_NAME(gabreassign)(const LTFAT_REAL *s, const LTFAT_REAL *tgrad,
                        const LTFAT_REAL *fgrad, const ltfatInt L, const ltfatInt W,
                        const ltfatInt a, const ltfatInt M, LTFAT_REAL *sr)
{

   ltfatInt ii, posi, posj;


   const ltfatInt N = L / a;
   const ltfatInt b = L / M;

   ltfatInt *timepos = ltfat_malloc(N * sizeof * timepos);
   ltfatInt *freqpos = ltfat_malloc(M * sizeof * freqpos);

   fftindex(N, timepos);
   fftindex(M, freqpos);

   /* Zero the output array. */
   memset(sr, 0, M * N * W * sizeof * sr);

   for (ltfatInt w = 0; w < W; w++)
   {
      for (ii = 0; ii < M; ii++)
      {
         for (ltfatInt jj = 0; jj < N; jj++)
         {
            /* Do a 'round' followed by a 'mod'. 'round' is not
             * present in all libraries, so use trunc(x+.5) instead */
            /*posi=positiverem((ltfatInt)trunc(tgrad[ii+jj*M]/b+freqpos[ii]+.5),M);
              posj=positiverem((ltfatInt)trunc(fgrad[ii+jj*M]/a+timepos[jj]+.5),N);*/
            posi = positiverem(ltfat_round(tgrad[ii + jj * M] / b + freqpos[ii]), M);
            posj = positiverem(ltfat_round(fgrad[ii + jj * M] / a + timepos[jj]), N);

            sr[posi + posj * M] += s[ii + jj * M];
         }
      }
   }

   LTFAT_SAFEFREEALL(freqpos, timepos);
}

LTFAT_EXTERN void
LTFAT_NAME(filterbankphasegrad)(const LTFAT_COMPLEX* c [],
                                const LTFAT_COMPLEX* ch[],
                                const LTFAT_COMPLEX* cd[],
                                const ltfatInt          M,
                                const ltfatInt        N[],
                                const ltfatInt          L,
                                const LTFAT_REAL   minlvl,
                                LTFAT_REAL*        tgrad[],
                                LTFAT_REAL*        fgrad[],
                                LTFAT_REAL*           cs[])
{
#define FOREACHCOEF \
    for(ltfatInt m=0;m<M;++m){\
        for(ltfatInt ii=0;ii<N[m];++ii){

#define ARRAYEL(c) ((c)[m][ii])
#define ENDFOREACHCOEF }}

LTFAT_REAL minlvlAlt = LTFAT_COMPLEXH(cabs)(c[0][0]);

// Compute spectrogram from coefficients
// Keep max value
FOREACHCOEF
LTFAT_REAL en = LTFAT_COMPLEXH(cabs)(ARRAYEL(c))*LTFAT_COMPLEXH(cabs)(ARRAYEL(c));
ARRAYEL(cs) = en;
if(en>minlvlAlt)
    minlvlAlt = en;
ENDFOREACHCOEF

// Adjust minlvl 
minlvlAlt *= minlvl;

// Force spectrogram values less tha minLvlAlt to minlvlAlt
FOREACHCOEF
LTFAT_REAL csEl = ARRAYEL(cs);
if(csEl<minlvlAlt)
    ARRAYEL(cs) = minlvlAlt;
ENDFOREACHCOEF

// Instantaneous frequency
FOREACHCOEF
LTFAT_REAL tgradEl = LTFAT_COMPLEXH(creal)(
                         ARRAYEL(cd)*LTFAT_COMPLEXH(conj)(ARRAYEL(c))/ARRAYEL(cs)
                                          )/L*2;
ARRAYEL(tgrad) = fabs(tgradEl)<=2?tgradEl:0.0f;
ENDFOREACHCOEF


FOREACHCOEF
ARRAYEL(fgrad) = LTFAT_COMPLEXH(cimag)(
                        ARRAYEL(ch)*LTFAT_COMPLEXH(conj)(ARRAYEL(c))/ARRAYEL(cs)
                                      );
ENDFOREACHCOEF

#undef FOREACHCOEF
#undef ENDFOREACHCOEF
#undef ARRAYEL
}

LTFAT_EXTERN void
LTFAT_NAME(filterbankreassign)(const LTFAT_REAL *s[],
                               const LTFAT_REAL *tgrad[],
                               const LTFAT_REAL *fgrad[],
                               const ltfatInt N[], const double a[],
                               const double cfreq[], const ltfatInt M,
                               LTFAT_REAL *sr[],
                               fbreassHints hints,
                               fbreassOptOut  *repos)
{
#define CHECKZEROCROSSINGANDBREAK( CMP, SIGN) \
     { \
        if ( (tmptgrad) CMP 0.0 )\
        {\
           if (fabs(tmptgrad) < fabs(oldtgrad))\
           {\
              tgradIdx[jj] = ii;\
           }\
           else\
           {\
              tgradIdx[jj] = ii SIGN 1;\
           }\
           break;\
        }\
        oldtgrad = tmptgrad;\
     }

   ltfatInt* chan_pos = NULL;

   int doTimeWraparound = !(hints & REASS_NOTIMEWRAPAROUND);

   if (repos)
   {
      chan_pos = ltfat_malloc((M + 1) * sizeof * chan_pos);

      chan_pos[0] = 0.0;
      for (ltfatInt ii = 0; ii < M; ii++)
      {
         chan_pos[ii + 1] = chan_pos[ii] + N[ii];
      }
   }

   /* Limit tgrad? */

   LTFAT_REAL oneover2 = 1.0 / 2.0;

   // This will hold center frequencies modulo 2.0
   double *cfreq2 = ltfat_malloc(M * sizeof * cfreq2);

   for (ltfatInt m = 0; m < M; m++)
   {
      // Zero the output arrays
      memset(sr[m], 0, N[m]*sizeof(LTFAT_REAL));
      // This is effectivelly modulo by 2.0
      cfreq2[m] = cfreq[m] - floor(cfreq[m] * oneover2) * 2.0;
   }

   ltfatInt* tgradIdx = NULL;
   ltfatInt* fgradIdx = NULL;
   ltfatInt Nold = 0;
   for (ltfatInt m = M - 1; m >= 0; m--)
   {
      // Ensure the temporary arrays have proper lengths
      if (N[m] > Nold)
      {
         if (tgradIdx)
         {
            ltfat_free(tgradIdx);
         }
         if (fgradIdx)
         {
            ltfat_free(fgradIdx);
         }

         tgradIdx = ltfat_malloc(N[m] * sizeof * tgradIdx);
         fgradIdx = ltfat_malloc(N[m] * sizeof * fgradIdx);
         Nold = N[m];
      }

      // We will use this repeatedly
      LTFAT_REAL cfreqm = cfreq2[m];

      /************************
       *
       * Calculating frequency reassignment
       *
       * **********************
       */
      for (ltfatInt jj = 0; jj < N[m]; jj++)
      {
         //
         LTFAT_REAL tmptgrad = 0.0;
         LTFAT_REAL tgradmjj = tgrad[m][jj] + cfreqm;
         LTFAT_REAL oldtgrad = 10; // 10 seems to be big enough
         // Zero this in case it falls trough, although it might not happen
         tgradIdx[jj] = 0;

         if (tgrad[m][jj] > 0)
         {
            ltfatInt ii;
            // Search for zero crossing

            // If the gradient is bigger than 0, start from m upward....
            for (ii = m; ii < M; ii++)
            {
               tmptgrad = cfreq2[ii] - tgradmjj;
               CHECKZEROCROSSINGANDBREAK( >= , -)
            }
            // If the previous for does not break, ii == M
            if (ii == M  && tmptgrad < 0.0)
            {
               for (ltfatInt ii = 0; ii < m ; ii++)
               {
                  tmptgrad = cfreq2[ii] - tgradmjj + 2.0;
                  CHECKZEROCROSSINGANDBREAK( >= , -)
               }
            }
            if (tgradIdx[jj] < 0)
            {
               tgradIdx[jj] = M - 1;
            }
         }
         else
         {
            ltfatInt ii;
            for (ii = m; ii >= 0; ii--)
            {
               tmptgrad = cfreq2[ii] - tgradmjj;
               CHECKZEROCROSSINGANDBREAK( <= , +)
            }
            // If the previous for does not break, ii=-1
            if (ii == -1 && tmptgrad > 0.0)
            {
               for (ltfatInt ii = M - 1; ii >= m; ii--)
               {
                  tmptgrad = cfreq2[ii] - tgradmjj - 2.0;
                  CHECKZEROCROSSINGANDBREAK( <= , +)
               }
            }
            if (tgradIdx[jj] >= M)
            {
               tgradIdx[jj] = 0;
            }
         }
      }

      /**********************************
       *                                *
       * Calculating time-reassignment  *
       *                                *
       **********************************/

      for (ltfatInt jj = 0; jj < N[m]; jj++)
      {
         ltfatInt tmpIdx = tgradIdx[jj];
         ltfatInt fgradIdxTmp = ltfat_round( (fgrad[m][jj] + a[m] * jj) / a[tmpIdx]);

         if(doTimeWraparound)
         {
            fgradIdx[jj] = positiverem( fgradIdxTmp, N[tmpIdx]);
         }
         else
         {
            fgradIdx[jj] = rangelimit( fgradIdxTmp, 0, N[tmpIdx]-1);
         }
      }


      for (ltfatInt jj = 0; jj < N[m]; jj++)
      {
         sr[tgradIdx[jj]][fgradIdx[jj]] += s[m][jj];
      }

      if (repos && chan_pos)
      {
         for (ltfatInt jj = 0; jj < N[m]; jj++)
         {
            ltfatInt tmpIdx =  chan_pos[tgradIdx[jj]] + fgradIdx[jj] ;
            ltfatInt* tmpl = &repos->reposl[tmpIdx];
            repos->repos[tmpIdx][*tmpl] = chan_pos[m] + jj;
            (*tmpl)++;
            if (*tmpl >= repos->reposlmax[tmpIdx])
            {
               fbreassOptOut_expand(repos, tmpIdx);
            }
         }
      }

   }


   LTFAT_SAFEFREEALL(tgradIdx, fgradIdx, cfreq2, chan_pos);
#undef CHECKZEROCROSSINGANDBREAK
}