1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""This module contains interface functions for the LTFAT computed
versions of sepdgt calculations.
.. moduleauthor:: Denis Arrivault
"""
from __future__ import print_function, division
import cython
import numpy as np
from ltfatpy.comp.ltfat cimport ltfatInt, dgt_phasetype, dgtreal_fb_d, dgtreal_long_d
from ltfatpy.comp.ltfat cimport TIMEINV, FREQINV
from numpy import int64
# don’t check for out-of-bounds indexing.
@cython.boundscheck(False)
# assume no negative indexing.
@cython.wraparound(False)
cdef comp_dgtreal_long_d(const double[:] f, const double[:] g, const int L,
const int W, const int a, const int M, const int M2,
const dgt_phasetype ptype, double complex[:] out):
""" Internal function, do not use it """
dgtreal_long_d(&f[0], &g[0], L, W, a, M, ptype, &out[0])
# don’t check for out-of-bounds indexing.
@cython.boundscheck(False)
# assume no negative indexing.
@cython.wraparound(False)
cdef comp_dgtreal_fb_d(const double[:] f, const double[:] g, const int L,
const int gl, const int W, const int a, const int M,
const int M2, const dgt_phasetype ptype,
double complex[:] out):
""" Internal function, do not use it """
dgtreal_fb_d(&f[0], &g[0], L, gl, W, a, M, ptype, &out[0])
# don’t check for out-of-bounds indexing.
@cython.boundscheck(False)
# assume no negative indexing.
@cython.wraparound(False)
cpdef comp_sepdgtreal(f, g, a, M, pt):
"""Function that computes separable dgt real
This is a computational subroutine, do not call it directly, use
:func:`~ltfatpy.gabor.dgtreal.dgtreal` instead.
"""
cdef int L, W
if f.dtype.type != np.float64:
raise TypeError("f data should be numpy.float64")
if g.dtype.type != np.float64:
raise TypeError("g data should be numpy.float64")
if pt != FREQINV and pt != TIMEINV:
raise TypeError("pt should be 0 (FREQINV) or 1 (TIMEINV)")
if f.ndim > 1:
if f.ndim > 2:
f = np.squeeze(f, axis=range(2, f.ndim-1))
L = f.shape[0]
W = f.shape[1]
f_combined = f.reshape(L*W, order='F')
else:
L = f.shape[0]
W = 1
f_combined = f
cdef ltfatInt gl = g.shape[0]
if g.ndim > 1:
if g.ndim > 2:
g = np.squeeze(g, axis=range(2, g.ndim-1))
if f.ndim == 2:
gl = gl * g.shape[1]
g_combined = g.reshape(gl, order='F')
else:
g_combined = g
cdef int N = L//a
cdef int M2 = M // 2 + 1
res = np.ndarray((M2 * W * (L // a)), dtype=np.complex128)
if gl < L:
comp_dgtreal_fb_d(f_combined, g_combined, L, gl, W, a, M, M2, pt, res)
else:
comp_dgtreal_long_d(f_combined, g_combined, L, W, a, M, M2, pt, res)
if W > 1:
res = np.reshape(res, (M2, N, W), order='F')
else:
res = np.reshape(res, (M2, N), order='F')
return res
|