1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""This module contains DSTIV function
Ported from ltfat_2.1.0/fourier/dstiv.m
.. moduleauthor:: Denis Arrivault
"""
from __future__ import print_function, division
from ltfatpy.comp.comp_dst import comp_dst
from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post
from ltfatpy.tools.postpad import postpad
def dstiv(f, L=None, dim=None):
r"""Discrete Sine Transform type IV
- Usage:
| ``c = dstiv(f)``
| ``c = dstiv(f,L,dim)``
- Input parameters:
:param numpy.ndarray f: Input data. **f** dtype has to be float64 or
complex128.
:param int L: Length of the output vector. Default is the length of
**f**.
:param int dim: dimension along which the transformation is applied.
Default is the first non-singleton dimension.
- Output parameter:
:return: ``c``
:rtype: numpy.ndarray
``dstiv(f)`` computes the discrete sine transform of type I of the
input signal **f**. If **f** is multi-dimensional, the transformation is
applied along the first non-singleton dimension.
``dstiv(f,L)`` zero-pads or truncates **f** to length **L** before doing
the transformation.
``dstiv(f,[],dim)`` or ``dstiv(f,L,dim)`` applies the transformation along
dimension **dim**.
The transform is real (output is real if input is real) and orthonormal.
This transform is its own inverse.
Let f be a signal of length **L** and let ``c=dstiv(f)``. Then
.. math::
c\\left(n+1\\right)=\\sqrt{\\frac{2}{L}}\\sum_{m=0}^{L-1}f\\left(
m+1\\right)\\sin\\left(\\frac{\\pi}{L}\\left(n+\\frac{1}{2}\\right)
\\left(m+\\frac{1}{2}\\right)\\right)
- Examples:
The following figures show the first 4 basis functions of the DSTIV of
length 20:
>>> import numpy as np
>>> # The dstiv is its own adjoint.
>>> F = dstiv(np.eye(20, dtype=np.float64))
>>> import matplotlib.pyplot as plt
>>> plt.close('all')
>>> fig = plt.figure()
>>> for ii in range(1,5):
... ax = fig.add_subplot(4,1,ii)
... ax.stem(F[:,ii-1])
...
<Container object of 3 artists>
<Container object of 3 artists>
<Container object of 3 artists>
<Container object of 3 artists>
>>> plt.show()
.. image:: images/dstiv.png
:width: 700px
:alt: dstiv image
:align: center
.. seealso:: :func:`~ltfatpy.fourier.dsti`,
:func:`~ltfatpy.fourier.dstii`, :func:`~ltfatpy.fourier.dstiii`,
:func:`~ltfatpy.fourier.dcti`
- References:
:cite:`rayi90,wi94`
"""
(f, L, _, _, dim, permutedsize, order) = assert_sigreshape_pre(f, L, dim)
if L is not None:
f = postpad(f, L)
if L == 1:
c = f
else:
c = comp_dst(f, 4)
return assert_sigreshape_post(c, dim, permutedsize, order)
if __name__ == '__main__': # pragma: no cover
import doctest
doctest.testmod()
|