File: pderiv.py

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (134 lines) | stat: -rw-r--r-- 4,233 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


""" Module of derivative of smooth periodic function computation

Ported from ltfat_2.1.0/fourier/pderiv.m

.. moduleauthor:: Florent Jaillet
"""

from __future__ import print_function, division

import numpy as np

from ltfatpy.fourier.fftindex import fftindex
from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post


def pderiv(f, dim=None, difforder=4):
    """ Derivative of smooth periodic function

    - Usage:
        | ``fd = pderiv(f)``
        | ``fd = pderiv(f, dim)``
        | ``fd = pderiv(f, dim, difforder)``

    - Input parameters:

    :param numpy.ndarray f: Input array
    :param int dim: Axis over which to compute the derivative
    :param difforder: Order of the centered finite difference scheme used.
        Possible values are: ``2``, ``4``, ``float('inf')``
    :type difforder: int or float

    - Output parameters:

    :returns: Derivative of **f**
    :rtype: numpy.ndarray

    ``pderiv(f)`` will compute the derivative of **f** using a using a 4th
    order centered finite difference scheme. **f** must have been obtained by
    a regular sampling. If **f** is a matrix, the derivative along the
    columns will be found.

    ``pderiv(f, dim)`` will do the same along dimension **dim**.

    ``pderiv(f, dim, difforder)`` uses a centered finite difference scheme of
    order difforder instead of the default.

    ``pderiv(f, dim, float('inf'))`` will compute the spectral derivative
    using a DFT.

    ``pderiv`` assumes that **f** is a regular sampling of a function on the
    torus ``[0, 1)``. The derivative of a function on a general torus
    ``[0, T)`` can be found by scaling the output by ``1/T``.
    """

    f, L, Ls, W, dim, permutedsize, order = assert_sigreshape_pre(f, dim=dim)

    if difforder == 2:
        fd = L * (np.roll(f, -1, 0) - np.roll(f, 1, 0)) / 2
    elif difforder == 4:
        fd = L * (- np.roll(f, -2, 0) + 8*np.roll(f, -1, 0) -
                  8*np.roll(f, 1, 0) + np.roll(f, 2, 0)) / 12
    elif difforder == float('inf'):
        n = fftindex(L, 0)
        n = np.tile(n, (W, 1)).transpose()

        fd = 2*np.pi*np.fft.ifft(1j*n*np.fft.fft(f, axis=0), axis=0)

        if np.isrealobj(f):
            fd = np.real(fd)

    else:
        raise ValueError('The specified differentation order is not '
                         'implemented.')

    fd = assert_sigreshape_post(fd, dim, permutedsize, order)

    return fd