1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
""" Module of derivative of smooth periodic function computation
Ported from ltfat_2.1.0/fourier/pderiv.m
.. moduleauthor:: Florent Jaillet
"""
from __future__ import print_function, division
import numpy as np
from ltfatpy.fourier.fftindex import fftindex
from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post
def pderiv(f, dim=None, difforder=4):
""" Derivative of smooth periodic function
- Usage:
| ``fd = pderiv(f)``
| ``fd = pderiv(f, dim)``
| ``fd = pderiv(f, dim, difforder)``
- Input parameters:
:param numpy.ndarray f: Input array
:param int dim: Axis over which to compute the derivative
:param difforder: Order of the centered finite difference scheme used.
Possible values are: ``2``, ``4``, ``float('inf')``
:type difforder: int or float
- Output parameters:
:returns: Derivative of **f**
:rtype: numpy.ndarray
``pderiv(f)`` will compute the derivative of **f** using a using a 4th
order centered finite difference scheme. **f** must have been obtained by
a regular sampling. If **f** is a matrix, the derivative along the
columns will be found.
``pderiv(f, dim)`` will do the same along dimension **dim**.
``pderiv(f, dim, difforder)`` uses a centered finite difference scheme of
order difforder instead of the default.
``pderiv(f, dim, float('inf'))`` will compute the spectral derivative
using a DFT.
``pderiv`` assumes that **f** is a regular sampling of a function on the
torus ``[0, 1)``. The derivative of a function on a general torus
``[0, T)`` can be found by scaling the output by ``1/T``.
"""
f, L, Ls, W, dim, permutedsize, order = assert_sigreshape_pre(f, dim=dim)
if difforder == 2:
fd = L * (np.roll(f, -1, 0) - np.roll(f, 1, 0)) / 2
elif difforder == 4:
fd = L * (- np.roll(f, -2, 0) + 8*np.roll(f, -1, 0) -
8*np.roll(f, 1, 0) + np.roll(f, 2, 0)) / 12
elif difforder == float('inf'):
n = fftindex(L, 0)
n = np.tile(n, (W, 1)).transpose()
fd = 2*np.pi*np.fft.ifft(1j*n*np.fft.fft(f, axis=0), axis=0)
if np.isrealobj(f):
fd = np.real(fd)
else:
raise ValueError('The specified differentation order is not '
'implemented.')
fd = assert_sigreshape_post(fd, dim, permutedsize, order)
return fd
|