1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Module of dgtreal calculation
Ported from ltfat_2.1.0/gabor/dgtreal.m
.. moduleauthor:: Denis Arrivault
"""
from __future__ import print_function, division
import numpy as np
from ltfatpy.comp.gabpars_from_windowsignal import gabpars_from_windowsignal
from ltfatpy.comp.comp_sepdgtreal import comp_sepdgtreal
def dgtreal(f, g, a, M, L=None, pt='freqinv'):
"""Discrete Gabor transform for real signals
- Usage:
| ``(c, Ls, g) = dgtreal(f, g, a, M)``
| ``(c, Ls, g) = dgtreal(f, g, a, M, L)``
| ``(c, Ls, g) = dgtreal(f, g, a, M, L, pt)``
- Input parameters:
:param numpy.ndarray f: Input data. **f** dtype should be float64
:param g: Window function.
:param int a: Length of time shift.
:param int M: Number of modulations.
:param int L: Length of transform to do. Default is None.
:param str pt: 'freqinv' or 'timeinv'. Default is 'freqinv'.
:type g: str, dict or numpy.ndarray of float64
- Output parameters:
:returns: ``(c, Ls, g)``
:rtype: tuple
:var numpy.ndarray c: :math:`M*N` array of complex128 coefficients.
:var int Ls: length of input signal
:var numpy.ndarray g: updated window function. dtype is float64.
``dgtreal(f, g, a, M)`` computes the Gabor coefficients (also known as a
windowed Fourier transform) of the real-valued input signal **f** with
respect to the real-valued window **g** and parameters **a** and **M**.
The output is a vector/matrix in a rectangular layout.
As opposed to :func:`~ltfatpy.gabor.dgt.dgt` only the coefficients of the
positive frequencies of the output are returned. ``dgtreal`` will refuse
to work for complex valued input signals.
The length of the transform will be the smallest multiple of **a** and
**M** that is larger than the signal. **f** will be zero-extended to the
length of the transform. If **f** is a matrix, the transformation is
applied to each column. The length of the transform done can be obtained
by ``L = c.shape[1] * a``.
The window **g** may be a vector of numerical values, a text string or a
dictionary. See the help of :py:meth:`~ltfatpy.gabor.gabwin` for more
details.
``dgtreal(f, g, a, M, L)`` computes the Gabor coefficients as above, but
does a transform of length **L**. **f** will be cut or zero-extended to
length **L** before the transform is done.
The ``dgtreal`` function returns the length of the input signal **f**.
This is handy for reconstruction:
>>> (c, Ls, g) = dgtreal(f, g, a, M) # doctest: +SKIP
>>> fr = idgtreal(c, gd, a, M, Ls) # doctest: +SKIP
will reconstruct the signal **f** no matter what the length of **f** is,
provided that **gd** is a dual window of **g**.
It also outputs the window used in the transform. This is useful if the
window was generated from a description in a string or dictionary.
See the help on :func:`~ltfatpy.gabor.dgt.dgt` for the definition of the
discrete Gabor transform. This routine will return the coefficients for
channel frequencies from 0 to ``floor(M/2)``.
``dgtreal`` optionnaly takes a **pt** argument:
'freqinv'
Compute a ``dgtreal`` using a frequency-invariant phase. This
is the default convention described in the help for
:func:`~ltfatpy.gabor.dgt.dgt`.
'timeinv'
Compute a ``dgtreal`` using a time-invariant phase. This
convention is typically used in filter bank algorithms.
``dgtreal`` can be used to manually compute a spectrogram, if you
want full control over the parameters and want to capture the output.
- Example:
>>> import matplotlib.pyplot as plt
>>> from ltfatpy import greasy
>>> (f,fs) = greasy() # Input test signal
>>> a = 10 # Downsampling factor in time
>>> M = 200 # Total number of channels, only 101 will be computed
>>> # Compute the coefficients using a 20 ms long Hann window
>>> c = dgtreal(f, {'name' : 'hann', 'M' : 0.02*fs}, a, M)[0]
>>> # Visualize the coefficients as a spectrogram
>>> dynrange = 90 # 90 dB dynamical range for the plotting
>>> from ltfatpy import plotdgtreal
>>> coef = plotdgtreal(c, a, M, fs=fs, dynrange=dynrange)
>>> plt.show()
.. image:: images/dgtreal.png
:width: 700px
:alt: spectrogram image
:align: center
.. seealso:: :func:`~ltfatpy.gabor.dgt.dgt`,
:func:`~ltfatpy.gabor.idgtreal.idgtreal`,
:func:`~ltfatpy.gabor.gabwin.gabwin`, :func:`dwilt`,
:func:`~ltfatpy.gabor.gabtight.gabtight`,
:func:`~ltfatpy.gabor.plotdgtreal.plotdgtreal`
- References:
:cite:`fest98,gr01`
"""
(f, gnum, _, Ls) = gabpars_from_windowsignal(f, g, a, M, L)[0:4]
if not np.issubdtype(gnum.dtype, np.floating):
raise ValueError('The window must be real-valued.')
# verify pt
if pt == 'timeinv':
pt = 1
elif pt == 'freqinv':
pt = 0
else:
raise ValueError("pt argument should be 'timeinv' or 'freqinv'.")
c = comp_sepdgtreal(f, gnum, a, M, pt)
return (c, Ls, gnum)
if __name__ == '__main__': # pragma: no cover
import doctest
doctest.testmod()
|