File: gabimagepars.py

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (187 lines) | stat: -rw-r--r-- 5,853 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Module to find Gabor parameters to generate image

Ported from ltfat_2.1.0/gabor/gabimagepars.m

.. moduleauthor:: Florent Jaillet
"""

from __future__ import print_function, division

import numpy as np

from ltfatpy.tools.lcm import lcm


def gabimagepars(Ls, x, y):
    """Find Gabor parameters to generate image

    - Usage:

        | ``(a, M, L, N, Ngood) = gabimagepars(Ls, x, y)``

    - Input parameters:

    :param int Ls: Signal length
    :param int x: Approximate number of pixels in the time direction
    :param int y: Number of pixels in the frequency direction

    - Output parameters:

    :returns: ``(a, M, L, N, Ngood)``
    :rtype: tuple

    :var int a: Length of time shift
    :var int M: Number of frequency channels
    :var int L: Length of transform to do
    :var int N: Total number of time steps
    :var int Ngood: Number of time steps (columns in the coefficients
        matrix) that contain relevant information. The columns from
        ``Ngood-1`` until ``N-1`` only contain information from a
        zero-extension of the signal.

    ``(a, M, L, N, Ngood) = gabimagepars(Ls, x, y)`` will compute a reasonable
    set of parameters **a**, **M** and **L** to produce a nice Gabor 'image' of
    a signal of length **Ls**.

    If you use this function to calculate a grid size for analysis of a
    real-valued signal (using :func:`~ltfatpy.gabor.dgtreal.dgtreal`), please
    input twice of the desired size **y**. This is because
    :func:`~ltfatpy.gabor.dgtreal.dgtreal` only returns half as many
    coefficients in the frequency direction as :func:`~ltfatpy.gabor.dgt.dgt`.

    For this function to work properly, the specified numbers for **x** and
    **y** must not be large prime numbers.

    - Example:

        We wish to compute a Gabor image of a real valued signal ``f``
        of length 7500. The image should have an approximate resolution of
        600 x 800 pixels:

        >>> from matplotlib.pyplot import show
        >>> from ltfatpy import linus, gabimagepars, dgtreal, plotdgtreal
        >>> f, fs = linus()
        >>> f = f[4000:4000+7500]
        >>> a, M, L, N, Ngood = gabimagepars(7500, 800, 2*600)
        >>> c = dgtreal(f, 'gauss', a, M)[0]
        >>> _ = plotdgtreal(c, a, M, fs=fs, dynrange=90)
        >>> show()

        The size of ``c`` is ``(M/2)+1 x N`` equal to 601 x 700 pixels.

    .. image:: images/gabimagepars.png
       :width: 600px
       :alt: Gabor image of f
       :align: center

    .. seealso:: :func:`~ltfatpy.gabor.dgt.dgt`,
                 :func:`~ltfatpy.gabor.dgtreal.dgtreal`,
                 :func:`~ltfatpy.gabor.sgram.sgram`
    """

    # Note: There is an inaccuracy in the help of the function gabimagepars in
    # ltfat 2.1.0 for Octave.
    # This inaccuracy concerns the size of the resulting coefficients in the
    # example. See the description and confirmation here:
    # http://sourceforge.net/p/ltfat/bugs/120/
    # This inaccuracy is corrected in the docstring of this Python port.

    if min(x, y) > Ls:
        # Small values case, just do an STFT
        M = Ls
        N = Ls
        a = 1
        Ngood = N
        L = Ls
    else:
        # Set M and N to be what the user specified
        M = y
        N = x

        # Determine the minimum transform size.
        K = lcm(M, N)

        # This L is good, but is it not the same as DGT will choose.
        Llong = np.ceil(Ls/K)*K

        # Fix a from the long L
        a = int(Llong/N)

        # Now we have fixed a and M, so we can use the standard method of
        # choosing L
        Lsmallest = lcm(a, M)
        L = int(np.ceil(Ls/Lsmallest)*Lsmallest)

        # We did not get N as desired.
        N = int(L/a)

        # Number of columns to display
        Ngood = int(np.ceil(Ls/a))

        if M <= a:
            raise ValueError(
                'Cannot generate a frame, the signal is too long '
                'as compared to the size of the image. Increase x and y.')

    return (a, M, L, N, Ngood)


if __name__ == '__main__':  # pragma: no cover
    import doctest
    doctest.testmod()