1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Module of phase gradient computation
Ported from ltfat_2.1.0/gabor/gabphasegrad.m
.. moduleauthor:: Florent Jaillet
"""
from __future__ import print_function, division
import numpy as np
from ltfatpy.comp.comp_sigreshape_pre import comp_sigreshape_pre
from ltfatpy.gabor.dgtlength import dgtlength
from ltfatpy.gabor.gabwin import gabwin
from ltfatpy.tools.postpad import postpad
from ltfatpy.fourier.fftindex import fftindex
from ltfatpy.comp.comp_sepdgt import comp_sepdgt
from ltfatpy.fourier.pderiv import pderiv
def gabphasegrad(method, *args, **kwargs):
"""Phase gradient of the discrete Gabor transform
- Usage:
| ``(tgrad, fgrad, c) = gabphasegrad('dgt', f, g, a, M, L=None)``
| ``(tgrad, fgrad) = gabphasegrad('phase', cphase, a)``
| ``(tgrad, fgrad) = gabphasegrad('abs', s, g, a, difforder=4)``
- Input parameters:
:param str method: Method used to compute the phase gradient, see the
possible values below
:param numpy.ndarray f: (defined if ``method='dgt'``) Input signal
:param numpy.ndarray cphase: (defined if ``method='phase'``) Phase of a
:func:`~ltfatpy.gabor.dgt.dgt` of the signal
:param numpy.ndarray s: (defined if ``method='abs'``) Spectrogram of the
signal
:param numpy.ndarray g: (defined if ``method='dgt'`` or ``method='phase'``)
Window function
:param int a: (defined if ``method='dgt'`` or ``method='phase'`` or
``method='abs'``) Length of time shift
:param int M: (defined if ``method='dgt'``) Number of channels
:param int L: (defined if ``method='dgt'``, optional) Length of transform
to do
:param int difforder: (defined if ``method='abs'``, optional) Order of the
centered finite difference scheme used to perform the needed numerical
differentiation
- Output parameters:
:returns: ``(tgrad, fgrad, c)`` if ``method='dgt'``, or ``(tgrad, fgrad)``
if ``method='phase'`` or ``method='abs'``
:rtype: tuple
:var numpy.ndarray tgrad: Instantaneous frequency
:var numpy.ndarray fgrad: Local group delay
:var numpy.ndarray c: Gabor coefficients
``gabphasegrad`` computes the time-frequency gradient of the phase of the
:func:`~ltfatpy.gabor.dgt.dgt` of a signal. The derivative in time
**tgrad** is the instantaneous frequency while the frequency derivative
**fgrad** is the local group delay.
**tgrad** and **fgrad** measure the deviation from the current time and
frequency, so a value of zero means that the instantaneous frequency is
equal to the center frequency of the considered channel.
**tgrad** is scaled such that distances are measured in samples. Similarly,
**fgrad** is scaled such that the Nyquist frequency (the highest possible
frequency) corresponds to a value of ``L/2``.
The computation of **tgrad** and **fgrad** is inaccurate when the absolute
value of the Gabor coefficients is low. This is due to the fact the the
phase of complex numbers close to the machine precision is almost
random. Therefore, **tgrad** and **fgrad** may attain very large random
values when ``abs(c)`` is close to zero.
The computation can be done using three different methods:
=========== ===========================================================
``'dgt'`` Directly from the signal.
``'phase'`` From the phase of a :func:`~ltfatpy.gabor.dgt.dgt` of the
signal. This is the classic method used in the phase
vocoder.
``'abs'`` From the absolute value of the
:func:`~ltfatpy.gabor.dgt.dgt`. Currently this method works
only for Gaussian windows.
=========== ===========================================================
``(tgrad, fgrad, c) = gabphasegrad('dgt', f, g, a, M)`` computes the
time-frequency gradient using a :func:`~ltfatpy.gabor.dgt.dgt` of the
signal **f**. The :func:`~ltfatpy.gabor.dgt.dgt` is computed using the
window **g** on the lattice specified by the time shift **a** and the
number of channels **M**. The algorithm used to perform this calculation
computes several DGTs, and therefore this routine takes the exact same
input parameters as :func:`~ltfatpy.gabor.dgt.dgt`.
The window **g** may be specified as in :func:`~ltfatpy.gabor.dgt.dgt`. If
the window used is ``'gauss'``, the computation will be done by a faster
algorithm.
``(tgrad, fgrad, c) = gabphasegrad('dgt', f, g, a, M)`` additionally
returns the Gabor coefficients ``c``, as they are always computed as a
byproduct of the algorithm.
``(tgrad, fgrad) = gabphasegrad('phase', cphase, a)`` computes the phase
gradient from the phase **cphase** of a :func:`~ltfatpy.gabor.dgt.dgt` of
the signal. The original :func:`~ltfatpy.gabor.dgt.dgt` from which the
phase is obtained must have been computed using a time-shift of **a**.
``(tgrad, fgrad) = gabphasegrad('abs', s, g, a)`` computes the phase
gradient from the spectrogram **s**. The spectrogram must have been
computed using the window **g** and time-shift **a**.
``(tgrad, fgrad) = gabphasegrad('abs', s, g, a, difforder=ord)`` uses a
centered finite difference scheme of order ``ord`` to perform the needed
numerical differentiation. Default is to use a 4th order scheme.
Currently the 'abs' method only works if the window **g** is a Gaussian
window specified as a string or cell array.
.. seealso:: :func:`resgram`, :func:`gabreassign`,
:func:`~ltfatpy.gabor.dgt.dgt`
- References:
:cite:`aufl95,cmdaaufl97,fl65`
"""
# NOTE: This function doesn't support the parameter lt (lattice type)
# supported by the corresponding octave function and the lattice used is
# seperable (square lattice lt = (0, 1)).
# NOTE: As in the octave version of this function, if needed, the
# undocumented optional keyword minlvl is available when using method=dgt.
# So it can be passed using a call of the following form:
# (tgrad, fgrad, c) = gabphasegrad('dgt', f, g, a, M, minlvl=val)
if not isinstance(method, str):
raise TypeError('First argument must be a str containing the method '
'name, "dgt", "phase" or "abs".')
method = method.lower()
if method == 'dgt':
# --------------------------- DGT method ------------------------
(f, g, a, M) = args
if 'L' in kwargs:
L = kwargs['L']
else:
L = None
if 'minlvl' in kwargs:
minlvl = kwargs['minlvl']
else:
minlvl = np.finfo(np.float64).tiny
# # ----- step 1 : Verify f and determine its length -------
# Change f to correct shape.
f, Ls, W, wasrow, remembershape = comp_sigreshape_pre(f, 0)
# # ------ step 2: Verify a, M and L
if not L:
# ----- step 2b : Verify a, M and get L from the signal length f---
L = dgtlength(Ls, a, M)
else:
# ----- step 2a : Verify a, M and get L
Luser = dgtlength(L, a, M)
if Luser != L:
raise ValueError('Incorrect transform length L = {0:d} '
'specified. Next valid length is L = {1:d}. '
'See the help of dgtlength for the '
'requirements.'.format(L, Luser))
# # ----- step 3 : Determine the window
g, info = gabwin(g, a, M, L)
if L < info['gl']:
raise ValueError('Window is too long.')
# # ----- step 4: final cleanup ---------------
f = postpad(f, L)
# # ------ algorithm starts --------------------
# Compute the time weighted version of the window.
hg = fftindex(L) * g
# The computation done this way is insensitive to whether the dgt is
# phaselocked or not.
c = comp_sepdgt(f, g, a, M, 0)
c_h = comp_sepdgt(f, hg, a, M, 0)
c_s = np.abs(c)**2
# Remove small values because we need to divide by c_s
c_s = np.maximum(c_s, minlvl*np.max(c_s))
# Compute the group delay
fgrad = np.real(c_h * c.conjugate() / c_s)
if info['gauss']:
# The method used below only works for the Gaussian window, because
# the time derivative and the time multiplicative of the Gaussian
# are identical.
tgrad = np.imag(c_h * c.conjugate() / c_s) / info['tfr']
else:
# The code below works for any window, and not just the Gaussian
dg = pderiv(g, difforder=float('inf')) / (2*np.pi)
c_d = comp_sepdgt(f, dg, a, M, 0)
# NOTE: There is a bug here in the original octave file as it
# contains a reshape that uses an undefined variable N.
# You can get the error with LTFAT 2.1.0 in octave by running for
# example:
# gabphasegrad('dgt', rand(16,1), rand(16,1), 4, 16)
#
# So we just comment out the corresponding line here, as it appears
# to be unneeded:
# c_d.shape = (M, N, W)
# Compute the instantaneous frequency
tgrad = -np.imag(c_d * c.conjugate() / c_s)
return (tgrad, fgrad, c)
elif method == 'phase':
# --------------------------- phase method ------------------------
(cphase, a) = args
if not np.isrealobj(cphase):
raise TypeError("Input phase must be real valued. Use the 'angle'"
" function to compute the argument of complex "
"numbers.")
# --- linear method ---
if cphase.ndim == 3:
M, N, W = cphase.shape
else:
M, N = cphase.shape
L = N*a
b = L/M
# NOTE: The following code found in the original octave version of the function
# hasn't been translated here to Python as it is not used:
# if 0
#
# # This is the classic phase vocoder algorithm by Flanagan.
#
# tgrad = cphase-circshift(cphase,[0,-1]);
# tgrad = tgrad- 2*pi*round(tgrad/(2*pi));
# tgrad = -tgrad/(2*pi)*L;
#
# # Phase-lock the angles.
# TimeInd = (0:(N-1))*a;
# FreqInd = (0:(M-1))/M;
#
# phl = FreqInd'*TimeInd;
# cphase = cphase+2*pi.*phl;
#
# fgrad = cphase-circshift(cphase,[1,0]);
# fgrad = fgrad- 2*pi*round(fgrad/(2*pi));
# fgrad = -fgrad/(2*pi)*L;
#
# end;
# This is the classic phase vocoder algorithm by Flanagan modified to
# yield a second order centered difference approximation.
# Forward approximation
tgrad_1 = cphase - np.roll(cphase, -1, axis=1)
# numpy round function doesn't use the same convention than octave for
# half-integers but the standard Python round function uses the same
# convention than octave, so we use the Python standard round in the
# computation below
octave_round = np.vectorize(round)
tgrad_1 = tgrad_1 - 2*np.pi*octave_round(tgrad_1/(2*np.pi))
# Backward approximation
tgrad_2 = np.roll(cphase, 1, axis=1) - cphase
tgrad_2 = tgrad_2 - 2*np.pi*octave_round(tgrad_2/(2*np.pi))
# Average
tgrad = (tgrad_1+tgrad_2) / 2
tgrad = -tgrad / (2*np.pi*a) * L
# Phase-lock the angles.
TimeInd = np.arange(N) * a
FreqInd = np.arange(M) / M
phl = np.dot(FreqInd.reshape((FreqInd.shape[0], 1)),
TimeInd.reshape((1, TimeInd.shape[0])))
# NOTE: in the following lines, the shape of phl is changed so that
# broadcasting works in the following addition with cphase when cphase
# has more than two dimensions
new_shape = np.ones((len(cphase.shape), ), dtype=int)
new_shape[0] = phl.shape[0]
new_shape[1] = phl.shape[1]
phl = phl.reshape(tuple(new_shape))
cphase = cphase + 2*np.pi*phl
# Forward approximation
fgrad_1 = cphase - np.roll(cphase, -1, axis=0)
fgrad_1 = fgrad_1 - 2*np.pi*octave_round(fgrad_1/(2*np.pi))
# Backward approximation
fgrad_2 = np.roll(cphase, 1, axis=0) - cphase
fgrad_2 = fgrad_2 - 2*np.pi*octave_round(fgrad_2/(2*np.pi))
# Average
fgrad = (fgrad_1+fgrad_2)/2
fgrad = fgrad/(2*np.pi*b)*L
return (tgrad, fgrad)
elif method == 'abs':
# --------------------------- abs method ------------------------
(s, g, a) = args
if 'difforder' in kwargs:
difforder = kwargs['difforder']
else:
difforder = 4
if not np.all(s >= 0.):
raise ValueError('First input argument must be positive or zero.')
if s.ndim == 3:
M, N, W = s.shape
else:
M, N = s.shape
L = N*a
g, info = gabwin(g, a, M, L)
if not info['gauss']:
raise ValueError('The window must be a Gaussian window (specified '
'as a string or as a dictionary).')
b = L/M
# We must avoid taking the log of zero.
# Therefore we add the smallest possible
# number
logs = np.log(s + np.finfo(s.dtype).tiny)
# XXX REMOVE Add a small constant to limit the dynamic range. This
# should lessen the problem of errors in the differentiation for points
# close to (but not exactly) zeros points.
maxmax = np.max(logs)
tt = -11.
logs[logs < (maxmax+tt)] = tt
fgrad = pderiv(logs, 1, difforder)/(2*np.pi)*info['tfr']
tgrad = pderiv(logs, 0, difforder)/(2*np.pi*info['tfr'])
return (tgrad, fgrad)
else:
raise ValueError("First argument must be the method name, 'dgt', "
"'phase' or 'abs'.")
|