1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Module of canonical tight windows calculation
Ported from ltfat_2.1.0/gabor/gabtight.m
.. moduleauthor:: Denis Arrivault,
Florent Jaillet
"""
from __future__ import print_function, division
import numpy as np
from ltfatpy.gabor.dgtlength import dgtlength
from ltfatpy.sigproc.fir2long import fir2long
from ltfatpy.sigproc.long2fir import long2fir
from ltfatpy.gabor.gabframediag import gabframediag
from ltfatpy.comp.comp_gabtight_long import comp_gabtight_long
def gabtight(g, a, M, L=None):
"""Canonical tight window of Gabor frame
- Usage:
| ``gt = gabtight(None, a, M, L)``
| ``gt = gabtight(g, a, M)``
| ``gt = gabtight(g, a, M, L)``
- Input parameters:
:param g: Gabor window
:type g: numpy.ndarray or str or dict
:param int a: Length of time shift
:param int M: Number of modulations
:param int L: Length of window (optional except if **g** is None)
- Output parameters:
:return: Canonical tight window
:rtype: numpy.ndarray
``gabtight(None, a, M, L)`` computes a nice tight window of length **L**
for a lattice with parameters **a**, **M**. The window is not an FIR
window, meaning that it will only generate a tight system if the system
length is equal to **L**.
``gabtight(g, a, M)`` computes the canonical tight window of the Gabor
frame with window **g** and parameters **a**, **M**.
The window **g** may be a vector of numerical values, a text string or a
dictionary. See the help of :func:`~ltfatpy.gabor.gabwin` for more details.
If the length of **g** is equal to **M**, then the input window is assumed
to be a FIR window. In this case, the canonical dual window also has
length of **M**. Otherwise the smallest possible transform length is
chosen as the window length.
``gabtight(g, a, M, L)`` returns a window that is tight for a system of
length **L**. Unless the input window **g** is a FIR window, the returned
tight window will have length **L**.
If ``a > M`` then an orthonormal window of the Gabor Riesz sequence
with window **g** and parameters **a** and **M** will be calculated.
- Examples:
The following example shows the canonical tight window of the Gaussian
window. This is calculated by default by
:func:`~ltfatpy.gabor.gabtight` if no window is specified:
>>> import matplotlib.pyplot as plt
>>> from ltfatpy import gabtight
>>> a = 20
>>> M = 30
>>> L = 300
>>> gt = gabtight(None, a, M, L)
>>> # Plot in the time-domain
>>> _ = plt.plot(gt)
>>> plt.show()
.. image:: images/gabtight.png
:width: 700px
:alt: pgauss gabtight image
:align: center
.. seealso:: :func:`~ltfatpy.gabor.gabdual.gabdual`,
:func:`~ltfatpy.gabor.gabwin.gabwin`,
:func:`~ltfatpy.sigproc.fir2long.fir2long`,
:func:`~ltfatpy.gabor.dgt.dgt`
"""
# Verify a, M and L
if g is None:
g = 'gauss'
if L is None:
if not isinstance(g, np.ndarray):
Ls = 1
else:
Ls = g.shape[0]
L = dgtlength(Ls, a, M)
else:
Luser = dgtlength(L, a, M)
if L != Luser:
raise ValueError(("Incorrect transform length L={0:d} specified." +
" Next valid length is L={1:d}. See the help" +
" of DGTLENGTH for the requirements.").format(L,
Luser))
# Determine the window
(g, info) = _call_gabwin(g, a, M, L)
if L < info['gl']:
raise ValueError('Window is too long.\n')
R = 1
if g.ndim > 1:
R = g.shape[1]
# Are we in the Riesz sequence of in the frame case
scale = 1
if a > M*R:
# Handle the Riesz basis (dual lattice) case.
# Swap a and M, and scale differently.
scale = np.sqrt(a/M)
a, M = M, a
# Compute the rectangular case
if info['gl'] <= M and R == 1:
# Diagonal of the frame operator
d = gabframediag(g, a, M, L)
gt = g / np.sqrt(long2fir(d, info['gl']))
else:
# Long window case
# Just in case, otherwise the call is harmless.
g = fir2long(g, L)
gt = comp_gabtight_long(g, a, M) * scale
# post process result
if np.issubdtype(g.dtype, np.floating):
# If g is real then the output is known to be real.
gt = gt.real
return gt
def _call_gabwin(g, a, M, L):
# gabwin is imported in a different function to avoid circular imports
from ltfatpy.gabor.gabwin import gabwin
return gabwin(g, a, M, L)
if __name__ == '__main__': # pragma: no cover
import doctest
doctest.testmod()
|