1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Module of idgt calculation
Ported from ltfat_2.1.0/gabor/idgt.m
.. moduleauthor:: Denis Arrivault
"""
import numpy as np
from ltfatpy.gabor.dgtlength import dgtlength
from ltfatpy.gabor.gabwin import gabwin
from ltfatpy.comp.comp_isepdgt import comp_isepdgt
from ltfatpy.tools.postpad import postpad
from ltfatpy.comp.comp_sigreshape_post import comp_sigreshape_post
def idgt(coef, g, a, Ls=None, pt='freqinv'):
r"""Inverse discrete Gabor transform
- Usage:
| ``(f, g) = idgt(c, g, a)``
| ``(f, g) = idgt(c, g, a, Ls)``
| ``(f, g) = idgt(c, g, a, Ls, pt)``
- Input parameters:
:param numpy.ndarray c: Array of coefficients
:param g: Window function
:param int a: Length of time shift
:param int Ls: Length of signal
:param str pt: 'freqinv' or 'timeinv'. Default is 'freqinv'.
:type g: str, dict or numpy.ndarray
- Output parameters:
:return: Signal (dtype = complex128)
:rtype: numpy.ndarray
``idgt(c, g, a)`` computes the Gabor expansion of the input coefficients
**c** with respect to the window **g** and time shift **a**. The number of
channels is deduced from the size of the coefficients **c**.
``idgt(c, g, a, Ls)`` does as above but cuts or extends **f** to length
**Ls**.
``(f, g)=idgt(...)`` additionally outputs the window used in the
transform. This is useful if the window was generated from a description
in a string or cell array.
For perfect reconstruction, the window used must be a dual window of the
one used to generate the coefficients.
The window **g** may be a vector of numerical values, a text string or a
cell array. See the help of :func:`~ltfatpy.gabor.gabwin` for more details.
If **g** is a row vector, then the output will also be a row vector. If
**c** is 3-dimensional, then ``idgt`` will return a matrix consisting of
one column vector for each of the TF-planes in **c**.
Assume that ``f=idgt(c, g, a, L)`` for an array **c** of size
:math:`M \\times N`. Then the following holds for :math:`k=0,\\ldots,L-1`:
.. math::
f(l+1) = \\sum_{n=0}^{N-1}\\sum_{m=0}^{M-1}c(m+1,n+1)e^{2\\pi iml/M}
g(l-an+1)
- Additional parameters:
``idgt`` takes the following keyword at the end of the line of input
arguments:
pt='freqinv'
Compute a DGT using a frequency-invariant phase. This
is the default convention described above.
pt='timeinv'
Compute a DGT using a time-invariant phase. This
convention is typically used in FIR-filter algorithms.
- Examples:
The following example demonstrates the basic principles for getting
perfect reconstruction (short version)::
>>> from ltfatpy import greasy
>>> from ltfatpy import dgt
>>> f = greasy()[0] # Input test signal
>>> a = 32 # time shift
>>> M = 64 # frequency shift
>>> gs = {'name': 'blackman', 'M': 128} # synthesis window
>>> # analysis window
>>> ga = {'name' : ('dual', gs['name']), 'M' : 128}
>>> (c, Ls) = dgt(f, ga, a, M)[0:2] # analysis
>>> # ... do interesting stuff to c at this point ...
>>> r = idgt(c, gs, a, Ls)[0] # synthesis
>>> np.linalg.norm(f-r) < 1e-10 # test
True
.. seealso:: :func:`~ltfatpy.gabor.dgt.dgt`,
:func:`~ltfatpy.gabor.gabwin.gabwin`, :func:`dwilt`,
:func:`~ltfatpy.gabor.gabtight.gabtight`
"""
if (not isinstance(g, np.ndarray) and not isinstance(g, str) and
not isinstance(g, dict)):
raise TypeError('g must be a numpy.array or str or dict.')
if (isinstance(g, np.ndarray) and g.size < 2):
raise ValueError('g must be a vector (you probably forgot to supply' +
' the window function as input parameter.)')
# Define initial value for flags and key/value pairs.
if coef.ndim < 2:
raise ValueError('coef must have at least 2 dimensions')
M = coef.shape[0]
N = coef.shape[1]
if coef.ndim > 2:
W = coef.shape[2]
else:
W = 1
if not isinstance(a, int):
raise TypeError('a must be an integer')
L = N * a
Ltest = dgtlength(L, a, M)
if Ltest != L:
ValueError('Incorrect size of coefficient array or "a" parameter. ' +
' See the help of DGTLENGTH for the requirements.')
# verify pt
if pt == 'timeinv':
pt = 1
elif pt == 'freqinv':
pt = 0
else:
mes = "pt (" + str(pt) + ") argument should be 'timeinv' or 'freqinv'."
raise ValueError(mes)
# Determine the window
gnum = gabwin(g, a, M, L)[0]
f = comp_isepdgt(coef, gnum, a, pt)
# Cut or extend f to the correct length, if desired.
if Ls is not None:
f = postpad(f, Ls)
else:
Ls = L
f = comp_sigreshape_post(f, Ls, 0, (0, W))
return (f, gnum)
if __name__ == '__main__': # pragma: no cover
import doctest
doctest.testmod()
|