1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Module of greasy signal loading
Ported from ltfat_2.1.0/signals/greasy.m
.. moduleauthor:: Denis Arrivault,
Florent Jaillet
"""
from __future__ import print_function, division
from scipy.io.wavfile import read as wavread
import importlib.resources
import numpy as np
def greasy():
"""Load the 'greasy' test signal
- Usage:
| ``(s, fs) = greasy()``
- Output parameters:
:returns: ``(s, fs)``
:rtype: tuple
:var numpy.ndarray s: 'greasy' signal
:var int fs: sampling frequency in Hz
``greasy`` loads the 'greasy' signal. It is a recording of a woman
pronouncing the word "greasy".
The signal is 5880 samples long and recorded at 16 kHz with around 11
bits of effective quantization.
The signal has been scaled to not produce any clipping when
played. To get integer values use ``numpy.rint(greasy()[0]*2048.)``.
The signal was obtained from Wavelab
(`<http://www-stat.stanford.edu/~wavelab/>`_), it is a part of the first
sentence of the TIMIT speech corpus "She had your dark suit in greasy
wash water all year":
`<http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1>`_.
- Examples:
Plot of 'greasy' in the time-domain:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from ltfatpy import greasy
>>> _ = plt.plot(np.arange(5880.)/16000., greasy()[0]);
>>> _ = plt.xlabel('Time (seconds)')
>>> _ = plt.ylabel('Amplitude')
>>> plt.show()
Plot of 'greasy' in the time-frequency-domain:
>>> import matplotlib.pyplot as plt
>>> from ltfatpy import greasy, sgram
>>> _ = sgram(greasy()[0], 16000., 90.)
>>> plt.show()
.. image:: images/greasy_1.png
:width: 700px
:alt: time domain image
:align: center
.. image:: images/greasy_2.png
:width: 600px
:alt: spectrogram image
:align: center
- References:
:cite:`mazh93`
"""
# f = resource_stream(__name__, "greasy.wav")
# ref = importlib.resources.files(__name__).joinpath("greasy.wav")
ref = importlib.resources.files(__package__).joinpath("greasy.wav")
with ref.open('rb') as f:
fs, s = wavread(f)
s = s.astype(np.float64) / 2.**15.
return (s, fs)
if __name__ == '__main__': # pragma: no cover
import doctest
doctest.testmod()
|