File: groupthresh.py

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (172 lines) | stat: -rw-r--r-- 6,130 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


""" Module of group thresholding

Ported from ltfat_2.1.0/sigproc/groupthresh.m

.. moduleauthor:: Florent Jaillet
"""

from __future__ import print_function, division

import numpy as np

from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post
from ltfatpy.sigproc.thresh import thresh


def groupthresh(xi, lamb, dim=1, group_type='group', thresh_type='soft'):
    """Group thresholding

    - Usage:

        | ``xo = groupthresh(xi, lamb)``
        | ``xo = groupthresh(xi, lamb, dim)``
        | ``xo = groupthresh(xi, lamb, ...)``

    - Input parameters:

    :param numpy.ndarray xi: Input array. ``xi`` must be a two-dimensional
        array, with dimension ``0`` labelling groups, and dimension ``1``
        labelling members. This means that the groups are the row vectors of
        the input (the vectors along the dimension ``1``).
    :param float lamb: Threshold
    :param int dim: Dimension along which to choose the groups
        (default ``dim=1``)
    :param str group_type: Optional flag specifying the grouping behaviour
        (see possible values below)
    :param str thresh_type: Optional flag specifying the type of thresholding
        within each group (see the parameter ``thresh_type`` in the help
        of :func:`~ltfatpy.sigproc.thresh.thresh` for possible values,
        default ``thresh_type=soft``)

    - Output parameters:

    :returns: Array of the same shape as **xi** containing data from **xi**
        after group thresholding
    :rtype: numpy.ndarray

    ``groupthresh(xi, lamb)`` performs group thresholding on ``xi``, with
    threshold ``lamb``.

    ``groupthresh(xi, lamb, dim)`` chooses groups along dimension ``dim``.

    The parameter **group_type** can take the following values:
        =========== =======================================================
        ``'group'`` Shrinks all coefficients within a given group according
                    to the value of the :math:`l^2` norm of the group in
                    comparison to the threshold ``lamb``.
                    This is the default

        ``'elite'`` Shrinks all coefficients within a given group according
                    to the value of the :math:`l^1` norm of the group in
                    comparison to the threshold value ``lamb``
        =========== =======================================================

    .. seealso::
        :func:`~ltfatpy.sigproc.thresh.thresh`

    - References:
        :cite:`Kowalski08sparsity,kowalski2009mixed,yu2008audio`
    """

    # Note: This function doesn't support the handling of sparse matrices
    # available in the Octave version. Only full numpy arrays are supported in
    # input and output.

    if not isinstance(lamb, float):
        raise TypeError('lamb must be a float')

    # dim (the time or frequency selector) is handled by assert_sigreshape_pre
    xi, L, NbMembers, NbGroups, dim, permutedshape, order = \
        assert_sigreshape_pre(xi, None, dim)

    # Dense case (this Python port doesn't handle the sparse matrix case)
    xo = np.zeros(xi.shape, dtype=xi.dtype)

    if group_type == 'group':
        groupnorm = np.sqrt(np.sum(np.abs(xi)**2., axis=0))
        w = thresh(groupnorm, lamb, thresh_type=thresh_type)[0] / groupnorm

        # Clean w for NaN. NaN appears if the input has a group with norm
        # exactly 0.
        w[np.isnan(w)] = 0

        xo = xi * w

    elif group_type == 'elite':
        for ii in range(NbGroups):
            y = np.sort(np.abs(xi[:, ii]))[::-1]
            rhs = np.cumsum(y)
            rhs = rhs * lamb / (1. + lamb*np.arange(1., NbMembers+1))
            M_ii = np.nonzero(np.diff(np.sign(y-rhs)))[0]
            # Note: the test on M_ii in the Octave version of this function
            # is surprisingly written as find can only return non-zero values
            # or an empty array. Here an equivalent test is written using a
            # more explicit formulation.
            if M_ii.size != 0:
                tau_ii = float(lamb * np.linalg.norm(y[:M_ii[0]+1], 1) /
                               (1. + lamb*(M_ii[0]+1)))
            else:
                tau_ii = 0.

            xo[:, ii] = thresh(xi[:, ii], tau_ii, thresh_type=thresh_type)[0]

    xo = assert_sigreshape_post(xo, dim, permutedshape, order)

    return xo