1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
""" Module of group thresholding
Ported from ltfat_2.1.0/sigproc/groupthresh.m
.. moduleauthor:: Florent Jaillet
"""
from __future__ import print_function, division
import numpy as np
from ltfatpy.comp.assert_sigreshape_pre import assert_sigreshape_pre
from ltfatpy.comp.assert_sigreshape_post import assert_sigreshape_post
from ltfatpy.sigproc.thresh import thresh
def groupthresh(xi, lamb, dim=1, group_type='group', thresh_type='soft'):
"""Group thresholding
- Usage:
| ``xo = groupthresh(xi, lamb)``
| ``xo = groupthresh(xi, lamb, dim)``
| ``xo = groupthresh(xi, lamb, ...)``
- Input parameters:
:param numpy.ndarray xi: Input array. ``xi`` must be a two-dimensional
array, with dimension ``0`` labelling groups, and dimension ``1``
labelling members. This means that the groups are the row vectors of
the input (the vectors along the dimension ``1``).
:param float lamb: Threshold
:param int dim: Dimension along which to choose the groups
(default ``dim=1``)
:param str group_type: Optional flag specifying the grouping behaviour
(see possible values below)
:param str thresh_type: Optional flag specifying the type of thresholding
within each group (see the parameter ``thresh_type`` in the help
of :func:`~ltfatpy.sigproc.thresh.thresh` for possible values,
default ``thresh_type=soft``)
- Output parameters:
:returns: Array of the same shape as **xi** containing data from **xi**
after group thresholding
:rtype: numpy.ndarray
``groupthresh(xi, lamb)`` performs group thresholding on ``xi``, with
threshold ``lamb``.
``groupthresh(xi, lamb, dim)`` chooses groups along dimension ``dim``.
The parameter **group_type** can take the following values:
=========== =======================================================
``'group'`` Shrinks all coefficients within a given group according
to the value of the :math:`l^2` norm of the group in
comparison to the threshold ``lamb``.
This is the default
``'elite'`` Shrinks all coefficients within a given group according
to the value of the :math:`l^1` norm of the group in
comparison to the threshold value ``lamb``
=========== =======================================================
.. seealso::
:func:`~ltfatpy.sigproc.thresh.thresh`
- References:
:cite:`Kowalski08sparsity,kowalski2009mixed,yu2008audio`
"""
# Note: This function doesn't support the handling of sparse matrices
# available in the Octave version. Only full numpy arrays are supported in
# input and output.
if not isinstance(lamb, float):
raise TypeError('lamb must be a float')
# dim (the time or frequency selector) is handled by assert_sigreshape_pre
xi, L, NbMembers, NbGroups, dim, permutedshape, order = \
assert_sigreshape_pre(xi, None, dim)
# Dense case (this Python port doesn't handle the sparse matrix case)
xo = np.zeros(xi.shape, dtype=xi.dtype)
if group_type == 'group':
groupnorm = np.sqrt(np.sum(np.abs(xi)**2., axis=0))
w = thresh(groupnorm, lamb, thresh_type=thresh_type)[0] / groupnorm
# Clean w for NaN. NaN appears if the input has a group with norm
# exactly 0.
w[np.isnan(w)] = 0
xo = xi * w
elif group_type == 'elite':
for ii in range(NbGroups):
y = np.sort(np.abs(xi[:, ii]))[::-1]
rhs = np.cumsum(y)
rhs = rhs * lamb / (1. + lamb*np.arange(1., NbMembers+1))
M_ii = np.nonzero(np.diff(np.sign(y-rhs)))[0]
# Note: the test on M_ii in the Octave version of this function
# is surprisingly written as find can only return non-zero values
# or an empty array. Here an equivalent test is written using a
# more explicit formulation.
if M_ii.size != 0:
tau_ii = float(lamb * np.linalg.norm(y[:M_ii[0]+1], 1) /
(1. + lamb*(M_ii[0]+1)))
else:
tau_ii = 0.
xo[:, ii] = thresh(xi[:, ii], tau_ii, thresh_type=thresh_type)[0]
xo = assert_sigreshape_post(xo, dim, permutedshape, order)
return xo
|