File: largestn.py

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (134 lines) | stat: -rw-r--r-- 3,958 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


""" Module of N largest coefficients extraction

Ported from ltfat_2.1.0/sigproc/largestn.m

.. moduleauthor:: Florent Jaillet
"""

import numpy as np

from ltfatpy.sigproc.thresh import thresh


def largestn(xi, N, thresh_type='hard'):
    """Keep N largest coefficients

    - Usage:

        | ``(xo, Nout) = largestn(xi, N)``
        | ``(xo, Nout) = largestn(xi, N, thresh_type)``

    - Input parameters:

    :param numpy.ndarray xi: Input array
    :param int N: Number of kept coefficients
    :param str thresh_type: Optional flag specifying the type of thresholding
        (see possible values below)

    - Output parameters:

    :returns: ``(xo, Nout)``
    :rtype: tuple

    :var numpy.ndarray xo: Array of the same shape as **xi** keeping
        the **N** largest coefficients
    :var int Nout: Number of coefficients kept

    The parameter **thresh_type** can take the following values:
        ============ ======================================================
        ``'hard'``   Perform hard thresholding. This is the default.

        ``'wiener'`` Perform empirical Wiener shrinkage. This is in between
                     soft and hard thresholding.

        ``'soft'``   Perform soft thresholding.
        ============ ======================================================

    If the coefficients represents a signal expanded in an orthonormal
    basis then this will be the best N-term approximation.

    .. note::
        If soft- or Wiener thresholding is selected, only ``N-1``
        coefficients will actually be returned. This is caused by the Nth
        coefficient being set to zero.

    .. seealso::
        :func:`~ltfatpy.sigproc.largestr.largestr`

    - References:
        :cite:`ma98`
    """

    if not isinstance(N, int):
        raise TypeError('N must be an int.')

    # Sort the absolute values of the coefficients.
    sxi = np.sort(abs(xi.flatten()))

    # Find the coefficient sitting at position N through the array,
    # and use this as a threshing value.
    if N <= 0:
        # Choose a thresh value higher than max
        lamb = sxi[-1] + 1.
    else:
        lamb = sxi[-N]

    xo, Nout = thresh(xi, lamb, thresh_type)

    return (xo, Nout)