1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
""" Module of N largest coefficients extraction
Ported from ltfat_2.1.0/sigproc/largestn.m
.. moduleauthor:: Florent Jaillet
"""
import numpy as np
from ltfatpy.sigproc.thresh import thresh
def largestn(xi, N, thresh_type='hard'):
"""Keep N largest coefficients
- Usage:
| ``(xo, Nout) = largestn(xi, N)``
| ``(xo, Nout) = largestn(xi, N, thresh_type)``
- Input parameters:
:param numpy.ndarray xi: Input array
:param int N: Number of kept coefficients
:param str thresh_type: Optional flag specifying the type of thresholding
(see possible values below)
- Output parameters:
:returns: ``(xo, Nout)``
:rtype: tuple
:var numpy.ndarray xo: Array of the same shape as **xi** keeping
the **N** largest coefficients
:var int Nout: Number of coefficients kept
The parameter **thresh_type** can take the following values:
============ ======================================================
``'hard'`` Perform hard thresholding. This is the default.
``'wiener'`` Perform empirical Wiener shrinkage. This is in between
soft and hard thresholding.
``'soft'`` Perform soft thresholding.
============ ======================================================
If the coefficients represents a signal expanded in an orthonormal
basis then this will be the best N-term approximation.
.. note::
If soft- or Wiener thresholding is selected, only ``N-1``
coefficients will actually be returned. This is caused by the Nth
coefficient being set to zero.
.. seealso::
:func:`~ltfatpy.sigproc.largestr.largestr`
- References:
:cite:`ma98`
"""
if not isinstance(N, int):
raise TypeError('N must be an int.')
# Sort the absolute values of the coefficients.
sxi = np.sort(abs(xi.flatten()))
# Find the coefficient sitting at position N through the array,
# and use this as a threshing value.
if N <= 0:
# Choose a thresh value higher than max
lamb = sxi[-1] + 1.
else:
lamb = sxi[-N]
xo, Nout = thresh(xi, lamb, thresh_type)
return (xo, Nout)
|