File: thresh.py

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (204 lines) | stat: -rw-r--r-- 6,711 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


""" Module of coefficient thresholding

Ported from ltfat_2.1.0/sigproc/thresh.m

.. moduleauthor:: Florent Jaillet
"""

from __future__ import print_function, division

import numpy as np


def thresh(xi, lamb, thresh_type='hard'):
    """Coefficient thresholding

    - Usage:

        | ``(xo, N) = thresh(xi, lamb)``
        | ``(xo, N) = thresh(xi, lamb, thresh_type)``

    - Input parameters:

    :param numpy.ndarray xi: Input array
    :param lamb: Threshold
    :type lamb: float or numpy.ndarray
    :param str thresh_type: Optional flag specifying the type of thresholding
        (see possible values below)

    - Output parameters:

    :returns: ``(xo, N)``
    :rtype: tuple

    :var numpy.ndarray xo: Array of the same shape as **xi**
        containing data from **xi** after thresholding
    :var int N: Number of coefficients kept

    ``thresh(xi, lamb)`` will perform hard thresholding on **xi**, i.e. all
    elements with absolute value less than scalar **lamb** will be set to zero.

    ``thresh(xi, lamb, 'soft')`` will perform soft thresholding on **xi**, i.e.
    **lamb** will be substracted from the absolute value of every element of
    **xi**.

    The lamb parameter can also be a vector with number of elements
    equal to ``xi.size`` or it can be a numpy array of the same shape
    as **xi**. **lamb** is then applied element-wise and in a column major
    order if **lamb** is a vector.

    The parameter **thresh_type** can take the following values:
        ============ ======================================================
        ``'hard'``   Perform hard thresholding. This is the default.

        ``'wiener'`` Perform empirical Wiener shrinkage. This is in between
                     soft and hard thresholding.

        ``'soft'``   Perform soft thresholding.
        ============ ======================================================

    The function ``wthresh`` in the Matlab Wavelet toolbox implements some of
    the same functionality.

    - Example:

        The following code produces a plot to demonstrate the difference
        between hard and soft thresholding for a simple linear input:

        >>> import numpy as np
        >>> import matplotlib.pyplot as plt
        >>> from ltfatpy.sigproc.thresh import thresh
        >>> t = np.linspace(-4, 4, 100)
        >>> _ = plt.plot(t, thresh(t, 1., 'soft')[0], 'r',
        ... t, thresh(t, 1., 'hard')[0], '.b',
        ... t, thresh(t, 1., 'wiener')[0], '--g')
        >>> _ = plt.legend(('Soft thresh.', 'Hard thresh.',  'Wiener thresh.'),
        ... loc='upper left')
        >>> plt.show()

    .. image:: images/thresh.png
       :width: 700px
       :alt: thresh image
       :align: center

    .. seealso::
        :func:`~ltfatpy.sigproc.largestr.largestr`,
        :func:`~ltfatpy.sigproc.largestn.largestn`

    - References:
        :cite:`lim1979enhancement,ghael1997improved`
    """

    # Note: This function doesn't support the handling of sparse matrices
    # available in the Octave version. Only full numpy arrays are supported in
    # input and output.

    error_msg = ('lamb must be a float or a numpy vector with '
                 'lamb.size == xi.size or whatever shape xi has such that '
                 'lamb.shape == xi.shape')

    if not (isinstance(lamb, float) or isinstance(lamb, np.ndarray)):
        raise TypeError(error_msg)

    if isinstance(lamb, np.ndarray):  # lamb is not scalar
        if lamb.size != xi.size:
            # lamb does not have the same number of elements
            raise ValueError(error_msg)

        # Reshape lamb if it is a vector
        if lamb.shape != xi.shape:
            lamb = lamb.reshape(xi.shape, order='F')

    # Dense case (this Python port doesn't handle the sparse matrix case)
    xo = np.zeros(xi.shape, dtype=xi.dtype)

    # Create a mask with a value of 1 for non-zero elements. For full
    # matrices, this is faster than the significance map.

    if thresh_type == 'hard':
        mask = abs(xi) >= lamb
        N = np.count_nonzero(mask)
        xo = xi * mask

    elif thresh_type == 'soft':
        # In the following lines, the +0 is significant: It turns
        # -0 into +0, oh! the joy of numerics.
        # Note: It is not sure that the "+0." needed in Octave is also needed
        # in Python, but it is kept here for safety.
        xa = abs(xi)-lamb
        mask = xa >= 0.
        xo = (mask*xa + 0.) * np.sign(xi)
        N = np.count_nonzero(mask) - np.count_nonzero(xa == 0.)

    elif thresh_type == 'wiener':
        with np.errstate(divide='ignore'):
            # NOTE: divide by 0 warnings are ignored because they are handled
            # below
            xa = lamb / abs(xi)
        xa[np.isinf(xa)] = 0
        xa = 1. - xa**2
        mask = xa > 0
        xo = xi * xa * mask
        N = np.count_nonzero(mask)

    return (xo, N)

if __name__ == '__main__':  # pragma: no cover
    import doctest
    doctest.testmod()