1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
""" Module of coefficient thresholding
Ported from ltfat_2.1.0/sigproc/thresh.m
.. moduleauthor:: Florent Jaillet
"""
from __future__ import print_function, division
import numpy as np
def thresh(xi, lamb, thresh_type='hard'):
"""Coefficient thresholding
- Usage:
| ``(xo, N) = thresh(xi, lamb)``
| ``(xo, N) = thresh(xi, lamb, thresh_type)``
- Input parameters:
:param numpy.ndarray xi: Input array
:param lamb: Threshold
:type lamb: float or numpy.ndarray
:param str thresh_type: Optional flag specifying the type of thresholding
(see possible values below)
- Output parameters:
:returns: ``(xo, N)``
:rtype: tuple
:var numpy.ndarray xo: Array of the same shape as **xi**
containing data from **xi** after thresholding
:var int N: Number of coefficients kept
``thresh(xi, lamb)`` will perform hard thresholding on **xi**, i.e. all
elements with absolute value less than scalar **lamb** will be set to zero.
``thresh(xi, lamb, 'soft')`` will perform soft thresholding on **xi**, i.e.
**lamb** will be substracted from the absolute value of every element of
**xi**.
The lamb parameter can also be a vector with number of elements
equal to ``xi.size`` or it can be a numpy array of the same shape
as **xi**. **lamb** is then applied element-wise and in a column major
order if **lamb** is a vector.
The parameter **thresh_type** can take the following values:
============ ======================================================
``'hard'`` Perform hard thresholding. This is the default.
``'wiener'`` Perform empirical Wiener shrinkage. This is in between
soft and hard thresholding.
``'soft'`` Perform soft thresholding.
============ ======================================================
The function ``wthresh`` in the Matlab Wavelet toolbox implements some of
the same functionality.
- Example:
The following code produces a plot to demonstrate the difference
between hard and soft thresholding for a simple linear input:
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from ltfatpy.sigproc.thresh import thresh
>>> t = np.linspace(-4, 4, 100)
>>> _ = plt.plot(t, thresh(t, 1., 'soft')[0], 'r',
... t, thresh(t, 1., 'hard')[0], '.b',
... t, thresh(t, 1., 'wiener')[0], '--g')
>>> _ = plt.legend(('Soft thresh.', 'Hard thresh.', 'Wiener thresh.'),
... loc='upper left')
>>> plt.show()
.. image:: images/thresh.png
:width: 700px
:alt: thresh image
:align: center
.. seealso::
:func:`~ltfatpy.sigproc.largestr.largestr`,
:func:`~ltfatpy.sigproc.largestn.largestn`
- References:
:cite:`lim1979enhancement,ghael1997improved`
"""
# Note: This function doesn't support the handling of sparse matrices
# available in the Octave version. Only full numpy arrays are supported in
# input and output.
error_msg = ('lamb must be a float or a numpy vector with '
'lamb.size == xi.size or whatever shape xi has such that '
'lamb.shape == xi.shape')
if not (isinstance(lamb, float) or isinstance(lamb, np.ndarray)):
raise TypeError(error_msg)
if isinstance(lamb, np.ndarray): # lamb is not scalar
if lamb.size != xi.size:
# lamb does not have the same number of elements
raise ValueError(error_msg)
# Reshape lamb if it is a vector
if lamb.shape != xi.shape:
lamb = lamb.reshape(xi.shape, order='F')
# Dense case (this Python port doesn't handle the sparse matrix case)
xo = np.zeros(xi.shape, dtype=xi.dtype)
# Create a mask with a value of 1 for non-zero elements. For full
# matrices, this is faster than the significance map.
if thresh_type == 'hard':
mask = abs(xi) >= lamb
N = np.count_nonzero(mask)
xo = xi * mask
elif thresh_type == 'soft':
# In the following lines, the +0 is significant: It turns
# -0 into +0, oh! the joy of numerics.
# Note: It is not sure that the "+0." needed in Octave is also needed
# in Python, but it is kept here for safety.
xa = abs(xi)-lamb
mask = xa >= 0.
xo = (mask*xa + 0.) * np.sign(xi)
N = np.count_nonzero(mask) - np.count_nonzero(xa == 0.)
elif thresh_type == 'wiener':
with np.errstate(divide='ignore'):
# NOTE: divide by 0 warnings are ignored because they are handled
# below
xa = lamb / abs(xi)
xa[np.isinf(xa)] = 0
xa = 1. - xa**2
mask = xa > 0
xo = xi * xa * mask
N = np.count_nonzero(mask)
return (xo, N)
if __name__ == '__main__': # pragma: no cover
import doctest
doctest.testmod()
|