File: test_comp_sigreshape.py

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (140 lines) | stat: -rw-r--r-- 5,070 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Test of the comp_sigreshape_pre and comp_sigreshape_post functions

.. moduleauthor:: Denis Arrivault
"""

from __future__ import print_function, division

import unittest
import random
import numpy as np
from ltfatpy.comp.comp_sigreshape_pre import comp_sigreshape_pre as cpre
from ltfatpy.comp.comp_sigreshape_post import comp_sigreshape_post as cpost
import functools


class TestCompSigReshape(unittest.TestCase):

    # Called before the tests.
    def setUp(self):
        print("Start TestCompSigReshape")

    # Called after the tests.
    def tearDown(self):
        print("Test done")

    def test_default(self):
        self.assertRaises(ValueError, cpre, "toto", 10)
        self.assertRaises(ValueError, cpre, np.empty((0,)), 10)
        self.assertRaises(ValueError, cpre, np.ones((10, 10, 2)), 1)

    def test_onedim(self):
        """One channel"""
        L = random.randint(5, 200)
        f = np.arange(0, L, dtype=np.float64)
        (fin, fl, W, wasrow, remembershape) = cpre(f, 0)
        fres = cpost(fin, fl, wasrow, remembershape)
        mess = "\nfl = {:d}, W = {:d}, wasrow = {:d},remembershape.shape = "
        mess += str(remembershape) + ", f.shape = " + str(f.shape)
        mess += ", fres.shape = " + str(fres.shape)
        mess = mess.format(fl, W, wasrow)
        np.testing.assert_array_equal(f, fres, mess)
        L = random.randint(5, 200)
        f = np.arange(0, L, dtype=np.float64)
        f.resize((1, L))
        (fin, fl, W, wasrow, remembershape) = cpre(f, 0)
        fres = cpost(fin, fl, wasrow, remembershape)
        mess = "\nfl = {:d}, W = {:d}, wasrow = {:d},remembershape.shape = "
        mess += str(remembershape) + ", f.shape = " + str(f.shape)
        mess += ", fres.shape = " + str(fres.shape)
        mess = mess.format(fl, W, wasrow)
        np.testing.assert_array_equal(f, fres, mess)

    def test_twodim(self):
        """Many channels signals"""
        shapef = tuple([random.randint(5, 20) for _ in range(2)])
        L = functools.reduce(lambda x, y: x * y, shapef)
        f = np.arange(0, L, dtype=np.complex128)
        f = f.reshape(shapef)
        (fin, fl, W, wasrow, remembershape) = cpre(f, 1)
        fres = cpost(fin, fl, wasrow, remembershape)
        mess = "\nfl = {:d}, W = {:d}, wasrow = {:d},remembershape.shape = "
        mess += str(remembershape) + ", f.shape = " + str(f.shape)
        mess += ", fres.shape = " + str(fres.shape)
        mess = mess.format(fl, W, wasrow)
        np.testing.assert_array_equal(f, fres, mess)

    def test_multidim(self):
        """Multidimensionnal signals"""
        shapef = tuple([random.randint(5, 20) for _ in range(4)])
        L = np.prod(shapef)
        f = np.arange(0, L, dtype=np.complex128)
        f = f.reshape(shapef)
        (fin, fl, W, wasrow, remembershape) = cpre(f, 5)
        fres = cpost(fin, fl, wasrow, remembershape)
        mess = "\nfl = {:d}, W = {:.2f}, wasrow = {:d},remembershape.shape = "
        mess += str(remembershape) + ", f.shape = " + str(f.shape)
        mess += ", fres.shape = " + str(fres.shape)
        mess = mess.format(fl, W, wasrow)
        np.testing.assert_array_equal(f, fres, mess)


if __name__ == "__main__":
    suite = unittest.TestLoader().loadTestsFromTestCase(TestCompSigReshape)
    unittest.TextTestRunner(verbosity=2).run(suite)