File: test_fftresample.py

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (146 lines) | stat: -rw-r--r-- 5,076 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Test of the fftresample function

.. moduleauthor:: Florent Jaillet
"""

from __future__ import print_function, division

import unittest
import numpy as np
from numpy.testing import assert_allclose

from ltfatpy.fourier.fftresample import fftresample
from ltfatpy.tests.datasets.read_ref_mat import read_ref_mat
from ltfatpy.tests.datasets.get_dataset_path import get_dataset_path


class TestFftresample(unittest.TestCase):

    # Called before the tests.
    def setUp(self):
        print('\nStart TestFftresample')

    # Called after the tests.
    def tearDown(self):
        print('Test done')

    def test_shape(self):
        """Check that the output has the expected shape
        """
        shapes = ((4,), (4, 3), (4, 3, 2))
        L_val = (2, 3, 6, 7)
        data_types = ('real', 'complex')
        inputs = {}
        for shape in shapes:
            for data_type in data_types:
                if data_type == 'real':
                    inputs['f'] = np.random.random(shape)
                elif data_type == 'complex':
                    inputs['f'] = (np.random.random(shape) +
                                   1.0j * np.random.random(shape))
                for dim in range(len(shape)):
                    inputs['dim'] = dim
                    for L in L_val:
                        inputs['L'] = L
                        h = fftresample(**inputs)
                        expected_shape = list(shape)
                        expected_shape[dim] = L
                        expected_shape = tuple(expected_shape)
                        msg = ('Wrong shape in the ouput of fftresample with '
                               'inputs ' + str(inputs))
                        self.assertEqual(h.shape, expected_shape, msg)

    def test_same_length(self):
        """Check that the data are unchanged when using the original length
        """
        shape = (16, 17)
        inputs = {}
        data_types = ('real', 'complex')
        for data_type in data_types:
            if data_type == 'real':
                inputs['f'] = np.random.random(shape)
            elif data_type == 'complex':
                inputs['f'] = (np.random.random(shape) +
                               1.0j * np.random.random(shape))
            for dim in range(len(shape)):
                inputs['dim'] = dim
                inputs['L'] = shape[dim]
                h = fftresample(**inputs)
                msg = ('Input and output should be almost equal when '
                       'resampling to the same length in fftresample with '
                       'inputs ' + str(inputs))
                assert_allclose(inputs['f'], h, rtol=1e-12, atol=1e-14,
                                err_msg=msg)

    def test_known(self):
        """Checking fftresample on some known results taken from Octave
        """
        filename = get_dataset_path('fftresample_ref.mat')
        data = read_ref_mat(filename)

        for inputs, outputs in data:
            h = fftresample(**inputs)
            msg = ('Wrong value in output of fftresample with inputs ' +
                   str(inputs))
            assert_allclose(h, outputs[0], rtol=1e-14, err_msg=msg)


if __name__ == '__main__':
    suite = unittest.TestLoader().loadTestsFromTestCase(TestFftresample)
    unittest.TextTestRunner(verbosity=2).run(suite)