File: test_middlepad.py

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (185 lines) | stat: -rw-r--r-- 6,518 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Test of the middlepad function

.. moduleauthor:: Florent Jaillet
"""

from __future__ import print_function, division

import unittest
import numpy as np
from numpy.testing import assert_array_equal
from copy import deepcopy

from ltfatpy.fourier.middlepad import middlepad


class TestMiddlepad(unittest.TestCase):

    # Called before the tests.
    def setUp(self):
        print('\nStart TestMiddlepad')

    # Called after the tests.
    def tearDown(self):
        print('Test done')

    def test_exceptions(self):
        """Check that the right exceptions are raised when expected
        """
        f = np.random.random((3,))
        # L must be an integer, check that we get an error if not
        self.assertRaises(TypeError,  middlepad, f, 'test')
        self.assertRaises(TypeError,  middlepad, f, 3.4)

        # L must be larger than 0, check that we get an error if not
        self.assertRaises(ValueError,  middlepad, f, -2)

    def test_known(self):
        """Checking middlepad on some known results taken from Octave
        """
        inputs = {}
        N_val = (1, 1, 3, 4, 3, 4, 7, 8, 7, 8)
        L_val = (2, 3, 7, 7, 8, 8, 3, 3, 4, 4)
        centerings = ('wp', 'hp')

        # Values of h as returned in Octave with ltfat 2.1.0
        all_h_oct = ((np.array([1., 0.]),
                      np.array([1., 0., 0.]),
                      np.array([1., 2., 0., 0., 0., 0., 3.]),
                      np.array([1., 2., 1.5, 0., 0., 1.5, 4.]),
                      np.array([1., 2., 0., 0., 0., 0., 0., 3.]),
                      np.array([1., 2., 1.5, 0., 0., 0., 1.5, 4.]),
                      np.array([1., 2., 7.]),
                      np.array([1., 2., 8.]),
                      np.array([1., 2., 4.5, 7.]),
                      np.array([1., 2., 5., 8.])),
                     (np.array([0.5, 0.5]),
                      np.array([0.5, 0., 0.5]),
                      np.array([1., 1., 0., 0., 0., 1., 3.]),
                      np.array([1., 2., 0., 0., 0., 3., 4.]),
                      np.array([1., 1., 0., 0., 0., 0., 1., 3.]),
                      np.array([1., 2., 0., 0., 0., 0., 3., 4.]),
                      np.array([1., 4., 7.]),
                      np.array([1., 4.5, 8.]),
                      np.array([1., 2., 6., 7.]),
                      np.array([1., 2., 7., 8.])))

        for centering, h_oct in zip(centerings, all_h_oct):
            inputs['centering'] = centering
            for N, L, h_ref in zip(N_val, L_val, h_oct):
                inputs['L'] = L
                inputs['f'] = np.arange(1., float(N+1))
                h = middlepad(**inputs)
                msg = ('Wrong value in putput of middlepad with inputs ' +
                       str(inputs))
                assert_array_equal(h_ref, h, msg)

    def test_known_shapes(self):
        """Check that middlepad resturns the same shapes as in Octave
        """
        shapes_in = ((1, 1), (2, 1), (1, 2), (1, 2, 3), (1, 1, 2),
                     (1, 1, 2, 3))
        shapes_out = ((3, 1), (3, 1), (1, 3), (3, 2, 3), (1, 1, 3),
                      (3, 1, 2, 3))
        inputs = {}
        inputs['L'] = 3
        for shape_in, shape_out in zip(shapes_in, shapes_out):
            inputs['f'] = np.ones(shape_in)
            h = middlepad(**inputs)
            msg = ('Wrong shape in the output of middlepad with inputs ' +
                   str(inputs))
            self.assertEqual(shape_out, h.shape, msg)

    def test_default_val(self):
        """Check that expected default value is used
        """
        # check that default value for centering is 'wp'
        inputs_def = {}
        N = 3
        inputs_def['f'] = np.ones((N,))
        inputs_def['L'] = N+1
        h_def = middlepad(**inputs_def)
        inputs = deepcopy(inputs_def)
        inputs['centering'] = 'wp'
        h = middlepad(**inputs)
        msg = ('Wrong default value for centering when coparing inputs ' +
               str(inputs_def) + ' and ' + str(inputs))
        assert_array_equal(h_def, h, msg)

    def test_param_dim(self):
        """Check that dim is taken into account
        """
        inputs = {}
        N = 3
        M = 4
        inputs['L'] = 5
        inputs['f'] = np.ones((N, M))
        inputs['dim'] = 0
        h = middlepad(**inputs)
        msg = 'middlepad is misusing dim with inputs ' + str(inputs)
        self.assertEqual(h.shape, (inputs['L'], M), msg)
        inputs['dim'] = 1
        h = middlepad(**inputs)
        msg = 'middlepad is misusing dim with inputs ' + str(inputs)
        self.assertEqual(h.shape, (N, inputs['L']), msg)


if __name__ == '__main__':
    suite = unittest.TestLoader().loadTestsFromTestCase(TestMiddlepad)
    unittest.TextTestRunner(verbosity=2).run(suite)