File: test_pderiv.py

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (143 lines) | stat: -rw-r--r-- 4,670 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Test of the pderiv function

.. moduleauthor:: Florent Jaillet
"""

from __future__ import print_function, division

import unittest
import numpy as np
from numpy.testing import assert_allclose, assert_array_equal
from copy import deepcopy

from ltfatpy.fourier.pderiv import pderiv
from ltfatpy.tests.datasets.read_ref_mat import read_ref_mat
from ltfatpy.tests.datasets.get_dataset_path import get_dataset_path


class TestPderiv(unittest.TestCase):

    # Called before the tests.
    def setUp(self):
        print('\nStart TestPderiv')

    # Called after the tests.
    def tearDown(self):
        print('Test done')

    def test_exceptions(self):
        """Check that the right exceptions are raised when expected
        """
        f = np.random.random((3,))
        # Possible values for difforder are: 2, 4, float('inf')
        self.assertRaises(ValueError,  pderiv, f, difforder=3)

    def test_shape(self):
        """Check that the output has the expected shape
        """
        shapes = ((7,), (7, 6), (7, 6, 5))
        difforders = (2, 4, float('inf'))
        inputs = {}
        for shape in shapes:
            inputs['f'] = np.random.random(shape)
            for dim in range(len(shape)):
                inputs['dim'] = dim
                for difforder in difforders:
                    inputs['difforder'] = difforder
                    fd = pderiv(**inputs)
                    msg = ('Wrong shape in the ouput of pderiv with '
                           'inputs ' + str(inputs))
                    self.assertEqual(fd.shape, shape, msg)

    def test_known(self):
        """Checking pderiv on some known results taken from Octave
        """
        filename = get_dataset_path('pderiv_ref.mat')
        data = read_ref_mat(filename)

        for inputs, outputs in data[:-1]:
            fd = pderiv(**inputs)
            msg = ('Wrong value in output of pderiv with inputs ' +
                   str(inputs))
            assert_array_equal(fd, outputs[0], msg)

        inputs, outputs = data[-1]
        fd = pderiv(**inputs)
        msg = ('Wrong value in output of pderiv with inputs ' + str(inputs))
        assert_allclose(fd, outputs[0], rtol=1e-14, err_msg=msg)

    def test_param_dim(self):
        """Check that the parameter dim is taken into account
        """
        inputs_0 = {}
        tmp = np.random.random((5,))
        inputs_0['f'] = np.dot(tmp[:, np.newaxis], tmp[np.newaxis, :])
        inputs_1 = deepcopy(inputs_0)
        inputs_0['dim'] = 0
        inputs_1['dim'] = 1
        fd_0 = pderiv(**inputs_0)
        fd_1 = pderiv(**inputs_1)
        msg = ('Wrong use of dim in pderiv when comparing inputs ' +
               str(inputs_0) + ' and ' + str(inputs_1))
        assert_array_equal(fd_0, fd_1.T, msg)


if __name__ == '__main__':
    suite = unittest.TestLoader().loadTestsFromTestCase(TestPderiv)
    unittest.TextTestRunner(verbosity=2).run(suite)