File: test_gabtight.py

package info (click to toggle)
python-ltfatpy 1.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 41,412 kB
  • sloc: ansic: 8,546; python: 6,470; makefile: 15
file content (132 lines) | stat: -rw-r--r-- 4,361 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
#   (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########


"""Test of the gabtight function

.. moduleauthor:: Denis Arrivault
"""

from __future__ import print_function, division

import unittest
import numpy as np
# from math import *
# import matplotlib.pyplot as plt
# from fractions import gcd

from ltfatpy.gabor.gabtight import gabtight
from ltfatpy.tests.datasets.read_gabtight_signal_ex_mat import GabTightExamples
from ltfatpy.fourier.pgauss import pgauss
from ltfatpy.fourier.psech import psech
from ltfatpy.tests.datasets.get_dataset_path import get_dataset_path


class TestGabTight(unittest.TestCase):
    # Called before the tests.
    def setUp(self):
        self.filename = get_dataset_path('gabtight_signal_ex.mat')

    # Called after the tests.
    def tearDown(self):
        print('Test done')

    def test_default(self):
        """ Comparing results with Matlab generated ones
        """
        pass
        dgs = GabTightExamples(self.filename)
        (L, a, M, rname, G, GT) = dgs.read_next_frame()
        while L != '':
            mess = "\nL = " + str(L) + "\na = " + str(a)
            mess += "\nM = " + str(M) + "\nrname = " + str(rname)
            mess += "\nG = " + str(G) + "\nGT = " + str(GT)
            t = gabtight(G, a, M, L)
            mess += "\ngt = " + str(t)
            self.assertTrue(np.linalg.norm(t-GT) <= 1e-10, mess)
            (L, a, M, rname, G, GT) = dgs.read_next_frame()

    def test_properties(self):
        self.assertRaises(ValueError, gabtight, "Gauss", 6, 8, 16)
        a = 10
        M = 40
        L = 160
        g = pgauss(L)[0]
        mess = "a = {0:d}, M = {1:d}, L = {2:d}".format(a, M, L)
        np.testing.assert_array_equal(gabtight(g, a, M), gabtight(g, a, M, L),
                                      mess)
        a = 20
        M = 49
        gt = gabtight("Gauss", a, M)
        L = gt.shape[0]
        mess = "a = {0:d}, M = {1:d}, L = {2:d}".format(a, M, L)
        np.testing.assert_array_almost_equal(gt, gabtight(None, a, M, L), 10,
                                             mess)
        g = pgauss(L)[0]
        gt = gabtight(g.reshape(L//2, 2), a, M)
        self.assertEqual(gt.shape, (L, 2))
        M = 10
        gt = gabtight("Gauss", a, M)
        self.assertEqual(gt.shape, (a,))
        gt1 = gabtight('sech', a, M)
        L = gt.shape[0]
        g = psech(L, a*M/L)[0]
        gt2 = gabtight(g, a, M)
        mess = "a = {0:d}, M = {1:d}".format(a, M)
        np.testing.assert_array_almost_equal(gt1, gt2, 10, mess)

if __name__ == '__main__':
    suite = unittest.TestLoader().loadTestsFromTestCase(TestGabTight)
    unittest.TextTestRunner(verbosity=2).run(suite)