1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
# -*- coding: utf-8 -*-
# ######### COPYRIGHT #########
# Credits
# #######
#
# Copyright(c) 2015-2025
# ----------------------
#
# * `LabEx Archimède <http://labex-archimede.univ-amu.fr/>`_
# * `Laboratoire d'Informatique Fondamentale <http://www.lif.univ-mrs.fr/>`_
# (now `Laboratoire d'Informatique et Systèmes <http://www.lis-lab.fr/>`_)
# * `Institut de Mathématiques de Marseille <http://www.i2m.univ-amu.fr/>`_
# * `Université d'Aix-Marseille <http://www.univ-amu.fr/>`_
#
# This software is a port from LTFAT 2.1.0 :
# Copyright (C) 2005-2025 Peter L. Soendergaard <peter@sonderport.dk>.
#
# Contributors
# ------------
#
# * Denis Arrivault <contact.dev_AT_lis-lab.fr>
# * Florent Jaillet <contact.dev_AT_lis-lab.fr>
#
# Description
# -----------
#
# ltfatpy is a partial Python port of the
# `Large Time/Frequency Analysis Toolbox <http://ltfat.sourceforge.net/>`_,
# a MATLAB®/Octave toolbox for working with time-frequency analysis and
# synthesis.
#
# Version
# -------
#
# * ltfatpy version = 1.1.2
# * LTFAT version = 2.1.0
#
# Licence
# -------
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ######### COPYRIGHT #########
"""Test of the tfplot function
NOTE: The validity of the plotting features of tfplot are not tested here, only
the fact that they can run without error is tested.
.. moduleauthor:: Florent Jaillet
"""
from __future__ import print_function, division
import unittest
import numpy as np
from numpy.testing import assert_array_equal
import matplotlib.pyplot as plt
from ltfatpy.gabor.tfplot import tfplot
# NOTE: The reference values used in the tests correspond to results
# obtained with Octave using ltfat 2.1.0
class TestTfplot(unittest.TestCase):
# Called before the tests.
def setUp(self):
print('\nStart TestTfplot')
# Called after the tests.
def tearDown(self):
print('Test done')
def test_exceptions(self):
"""Check that the right exceptions are raised when expected
"""
# coef must be a 2D numpy.ndarray, check that we get the right
# exceptions if not
self.assertRaises(TypeError, tfplot, 'test', 1, np.array([0., 1.]))
self.assertRaises(TypeError, tfplot, 1, 1, np.array([0., 1.]))
self.assertRaises(TypeError, tfplot, 1., 1, np.array([0., 1.]))
self.assertRaises(TypeError, tfplot, [0, 2], 1, np.array([0., 1.]))
self.assertRaises(ValueError, tfplot, np.ones((4,)), 1,
np.array([0., 1.]))
self.assertRaises(ValueError, tfplot, np.ones((4, 3, 2)), 1,
np.array([0., 1.]))
def test_normalization(self):
"""Check that the parameter normalization is used as expected
"""
normalizations = ('db', 'dbsq', 'linsq', 'linabs')
zeros_array = np.zeros((2, 2), dtype=np.float64)
outs = (40. + zeros_array, 20. + zeros_array, 10000. + zeros_array,
100. + zeros_array)
inputs = {}
inputs['coef'] = 0.0+100.0j + zeros_array
inputs['step'] = 1
inputs['yr'] = np.array([0., 1.])
inputs['display'] = False
for normalization, out_ref in zip(normalizations, outs):
inputs['normalization'] = normalization
out = tfplot(**inputs)
msg = ('tfplot is misusing normalization with inputs ' +
str(inputs))
assert_array_equal(out_ref, out, msg)
inputs['normalization'] = 'lin'
self.assertRaises(ValueError, tfplot, **inputs)
inputs['coef'] = 100. + zeros_array
out = tfplot(**inputs)
msg = ('tfplot is misusing normalization with inputs ' + str(inputs))
assert_array_equal(inputs['coef'], out, msg)
def test_tc(self):
"""Check that the parameter tc is used as expected
"""
coefs = (np.array([[1., 2., 3.], [4., 5., 6.]]),
np.array([[1., 2., 3., 4.], [5., 6., 7., 8.]]))
outs = (np.array([[3., 1., 2.], [6., 4., 5.]]),
np.array([[3., 4., 1., 2.], [7., 8., 5., 6.]]))
inputs = {}
inputs['step'] = 1
inputs['yr'] = np.array([0., 1.])
inputs['display'] = False
inputs['normalization'] = 'lin'
inputs['tc'] = True
for coef, out_ref in zip(coefs, outs):
inputs['coef'] = coef
out = tfplot(**inputs)
msg = ('tfplot is misusing tc with inputs ' + str(inputs))
assert_array_equal(out_ref, out, msg)
def test_clim_dynrange(self):
"""Check that the parameters clim and dynrange are used as expected
"""
inputs = {}
inputs['coef'] = np.array([[1., 10., 100.], [1000., 10000., 100000.]])
inputs['step'] = 1
inputs['yr'] = np.array([0., 1.])
inputs['display'] = False
inputs['clim'] = [20., 80.]
out_clim = np.array([[20., 20., 40.], [60., 80., 80.]])
out = tfplot(**inputs)
msg = ('tfplot is misusing clim with inputs ' + str(inputs))
assert_array_equal(out_clim, out, msg)
inputs.pop('clim')
inputs['dynrange'] = 60.
out_dynrange = np.array([[40., 40., 40.], [60., 80., 100.]])
out = tfplot(**inputs)
msg = ('tfplot is misusing dynrange with inputs ' + str(inputs))
assert_array_equal(out_dynrange, out, msg)
inputs['clim'] = [20., 80.]
out = tfplot(**inputs)
msg = ('tfplot is misusing clim and dynrange, clim should takes '
'precedence over dynrange with inputs ' + str(inputs))
assert_array_equal(out_clim, out, msg)
def test_plot(self):
"""Check that the all the plotting sections of tfplot can be run
"""
# NOTE: To avoid an error when running the tests in a environnement
# with no $DISPLAY variable defined, we switch matplotlib to a
# non-interactive backend
plt.switch_backend("ps")
coef = np.random.random((5, 4))
step = 1
yr = np.array([0., 1.])
plottypes = ('image', 'contour', 'surf', 'pcolor')
for plottype in plottypes:
tfplot(coef, step, yr, plottype=plottype)
fs = 10.
tfplot(coef, step, yr, plottype='image', fs=fs)
clim = (0., 1.)
tfplot(coef, step, yr, plottype='image', clim=clim)
if __name__ == '__main__':
suite = unittest.TestLoader().loadTestsFromTestCase(TestTfplot)
unittest.TextTestRunner(verbosity=2).run(suite)
|