1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
|
Lupa
====
.. image:: logo/logo-220x200.png
Lupa integrates the runtimes of Lua_ or LuaJIT2_ into CPython.
It is a partial rewrite of LunaticPython_ in Cython_ with some
additional features such as proper coroutine support.
.. _Lua: http://lua.org/
.. _LuaJIT2: http://luajit.org/
.. _LunaticPython: http://labix.org/lunatic-python
.. _Cython: http://cython.org
For questions not answered here, please contact the `Lupa mailing list`_.
.. _`Lupa mailing list`: http://www.freelists.org/list/lupa-dev
.. contents:: :local:
Major features
--------------
* separate Lua runtime states through a ``LuaRuntime`` class
* Python coroutine wrapper for Lua coroutines
* iteration support for Python objects in Lua and Lua objects in
Python
* proper encoding and decoding of strings (configurable per runtime,
UTF-8 by default)
* frees the GIL and supports threading in separate runtimes when
calling into Lua
* tested with Python 2.7/3.5 and later
* written for LuaJIT2 (tested with LuaJIT 2.0.2), but also works
with the normal Lua interpreter (5.1 and later)
* easy to hack on and extend as it is written in Cython, not C
Why the name?
-------------
In Latin, "lupa" is a female wolf, as elegant and wild as it sounds.
If you don't like this kind of straight forward allegory to an
endangered species, you may also happily assume it's just an
amalgamation of the phonetic sounds that start the words "Lua" and
"Python", two from each to keep the balance.
Why use it?
-----------
It complements Python very well. Lua is a language as dynamic as
Python, but LuaJIT compiles it to very fast machine code, sometimes
faster than many statically compiled languages for computational code.
The language runtime is very small and carefully designed for
embedding. The complete binary module of Lupa, including a statically
linked LuaJIT2 runtime, only weighs some 700KB on a 64 bit machine.
With standard Lua 5.1, it's less than 400KB.
However, the Lua ecosystem lacks many of the batteries that Python
readily includes, either directly in its standard library or as third
party packages. This makes real-world Lua applications harder to write
than equivalent Python applications. Lua is therefore not commonly
used as primary language for large applications, but it makes for a
fast, high-level and resource-friendly backup language inside of
Python when raw speed is required and the edit-compile-run cycle of
binary extension modules is too heavy and too static for agile
development or hot-deployment.
Lupa is a very fast and thin wrapper around Lua or LuaJIT. It makes it
easy to write dynamic Lua code that accompanies dynamic Python code by
switching between the two languages at runtime, based on the tradeoff
between simplicity and speed.
Examples
--------
..
## doctest helpers:
>>> try: _ = sorted
... except NameError:
... def sorted(seq):
... l = list(seq)
... l.sort()
... return l
.. code:: python
>>> import lupa
>>> from lupa import LuaRuntime
>>> lua = LuaRuntime(unpack_returned_tuples=True)
>>> lua.eval('1+1')
2
>>> lua_func = lua.eval('function(f, n) return f(n) end')
>>> def py_add1(n): return n+1
>>> lua_func(py_add1, 2)
3
>>> lua.eval('python.eval(" 2 ** 2 ")') == 4
True
>>> lua.eval('python.builtins.str(4)') == '4'
True
The function ``lua_type(obj)`` can be used to find out the type of a
wrapped Lua object in Python code, as provided by Lua's ``type()``
function:
.. code:: python
>>> lupa.lua_type(lua_func)
'function'
>>> lupa.lua_type(lua.eval('{}'))
'table'
To help in distinguishing between wrapped Lua objects and normal
Python objects, it returns ``None`` for the latter:
.. code:: python
>>> lupa.lua_type(123) is None
True
>>> lupa.lua_type('abc') is None
True
>>> lupa.lua_type({}) is None
True
Note the flag ``unpack_returned_tuples=True`` that is passed to create
the Lua runtime. It is new in Lupa 0.21 and changes the behaviour of
tuples that get returned by Python functions. With this flag, they
explode into separate Lua values:
.. code:: python
>>> lua.execute('a,b,c = python.eval("(1,2)")')
>>> g = lua.globals()
>>> g.a
1
>>> g.b
2
>>> g.c is None
True
When set to False, functions that return a tuple pass it through to the
Lua code:
.. code:: python
>>> non_explode_lua = lupa.LuaRuntime(unpack_returned_tuples=False)
>>> non_explode_lua.execute('a,b,c = python.eval("(1,2)")')
>>> g = non_explode_lua.globals()
>>> g.a
(1, 2)
>>> g.b is None
True
>>> g.c is None
True
Since the default behaviour (to not explode tuples) might change in a
later version of Lupa, it is best to always pass this flag explicitly.
Python objects in Lua
---------------------
Python objects are either converted when passed into Lua (e.g.
numbers and strings) or passed as wrapped object references.
.. code:: python
>>> wrapped_type = lua.globals().type # Lua's own type() function
>>> wrapped_type(1) == 'number'
True
>>> wrapped_type('abc') == 'string'
True
Wrapped Lua objects get unwrapped when they are passed back into Lua,
and arbitrary Python objects get wrapped in different ways:
.. code:: python
>>> wrapped_type(wrapped_type) == 'function' # unwrapped Lua function
True
>>> wrapped_type(len) == 'userdata' # wrapped Python function
True
>>> wrapped_type([]) == 'userdata' # wrapped Python object
True
Lua supports two main protocols on objects: calling and indexing. It
does not distinguish between attribute access and item access like
Python does, so the Lua operations ``obj[x]`` and ``obj.x`` both map
to indexing. To decide which Python protocol to use for Lua wrapped
objects, Lupa employs a simple heuristic.
Pratically all Python objects allow attribute access, so if the object
also has a ``__getitem__`` method, it is preferred when turning it
into an indexable Lua object. Otherwise, it becomes a simple object
that uses attribute access for indexing from inside Lua.
Obviously, this heuristic will fail to provide the required behaviour
in many cases, e.g. when attribute access is required to an object
that happens to support item access. To be explicit about the
protocol that should be used, Lupa provides the helper functions
``as_attrgetter()`` and ``as_itemgetter()`` that restrict the view on
an object to a certain protocol, both from Python and from inside
Lua:
.. code:: python
>>> lua_func = lua.eval('function(obj) return obj["get"] end')
>>> d = {'get' : 'value'}
>>> value = lua_func(d)
>>> value == d['get'] == 'value'
True
>>> value = lua_func( lupa.as_itemgetter(d) )
>>> value == d['get'] == 'value'
True
>>> dict_get = lua_func( lupa.as_attrgetter(d) )
>>> dict_get == d.get
True
>>> dict_get('get') == d.get('get') == 'value'
True
>>> lua_func = lua.eval(
... 'function(obj) return python.as_attrgetter(obj)["get"] end')
>>> dict_get = lua_func(d)
>>> dict_get('get') == d.get('get') == 'value'
True
Note that unlike Lua function objects, callable Python objects support
indexing in Lua:
.. code:: python
>>> def py_func(): pass
>>> py_func.ATTR = 2
>>> lua_func = lua.eval('function(obj) return obj.ATTR end')
>>> lua_func(py_func)
2
>>> lua_func = lua.eval(
... 'function(obj) return python.as_attrgetter(obj).ATTR end')
>>> lua_func(py_func)
2
>>> lua_func = lua.eval(
... 'function(obj) return python.as_attrgetter(obj)["ATTR"] end')
>>> lua_func(py_func)
2
Iteration in Lua
----------------
Iteration over Python objects from Lua's for-loop is fully supported.
However, Python iterables need to be converted using one of the
utility functions which are described here. This is similar to the
functions like ``pairs()`` in Lua.
To iterate over a plain Python iterable, use the ``python.iter()``
function. For example, you can manually copy a Python list into a Lua
table like this:
.. code:: python
>>> lua_copy = lua.eval('''
... function(L)
... local t, i = {}, 1
... for item in python.iter(L) do
... t[i] = item
... i = i + 1
... end
... return t
... end
... ''')
>>> table = lua_copy([1,2,3,4])
>>> len(table)
4
>>> table[1] # Lua indexing
1
Python's ``enumerate()`` function is also supported, so the above
could be simplified to:
.. code:: python
>>> lua_copy = lua.eval('''
... function(L)
... local t = {}
... for index, item in python.enumerate(L) do
... t[ index+1 ] = item
... end
... return t
... end
... ''')
>>> table = lua_copy([1,2,3,4])
>>> len(table)
4
>>> table[1] # Lua indexing
1
For iterators that return tuples, such as ``dict.iteritems()``, it is
convenient to use the special ``python.iterex()`` function that
automatically explodes the tuple items into separate Lua arguments:
.. code:: python
>>> lua_copy = lua.eval('''
... function(d)
... local t = {}
... for key, value in python.iterex(d.items()) do
... t[key] = value
... end
... return t
... end
... ''')
>>> d = dict(a=1, b=2, c=3)
>>> table = lua_copy( lupa.as_attrgetter(d) )
>>> table['b']
2
Note that accessing the ``d.items`` method from Lua requires passing
the dict as ``attrgetter``. Otherwise, attribute access in Lua would
use the ``getitem`` protocol of Python dicts and look up ``d['items']``
instead.
None vs. nil
------------
While ``None`` in Python and ``nil`` in Lua differ in their semantics, they
usually just mean the same thing: no value. Lupa therefore tries to map one
directly to the other whenever possible:
.. code:: python
>>> lua.eval('nil') is None
True
>>> is_nil = lua.eval('function(x) return x == nil end')
>>> is_nil(None)
True
The only place where this cannot work is during iteration, because Lua
considers a ``nil`` value the termination marker of iterators. Therefore,
Lupa special cases ``None`` values here and replaces them by a constant
``python.none`` instead of returning ``nil``:
.. code:: python
>>> _ = lua.require("table")
>>> func = lua.eval('''
... function(items)
... local t = {}
... for value in python.iter(items) do
... table.insert(t, value == python.none)
... end
... return t
... end
... ''')
>>> items = [1, None ,2]
>>> list(func(items).values())
[False, True, False]
Lupa avoids this value escaping whenever it's obviously not necessary.
Thus, when unpacking tuples during iteration, only the first value will
be subject to ``python.none`` replacement, as Lua does not look at the
other items for loop termination anymore. And on ``enumerate()``
iteration, the first value is known to be always a number and never None,
so no replacement is needed.
.. code:: python
>>> func = lua.eval('''
... function(items)
... for a, b, c, d in python.iterex(items) do
... return {a == python.none, a == nil, --> a == python.none
... b == python.none, b == nil, --> b == nil
... c == python.none, c == nil, --> c == nil
... d == python.none, d == nil} --> d == nil ...
... end
... end
... ''')
>>> items = [(None, None, None, None)]
>>> list(func(items).values())
[True, False, False, True, False, True, False, True]
>>> items = [(None, None)] # note: no values for c/d => nil in Lua
>>> list(func(items).values())
[True, False, False, True, False, True, False, True]
Note that this behaviour changed in Lupa 1.0. Previously, the ``python.none``
replacement was done in more places, which made it not always very predictable.
Lua Tables
----------
Lua tables mimic Python's mapping protocol. For the special case of
array tables, Lua automatically inserts integer indices as keys into
the table. Therefore, indexing starts from 1 as in Lua instead of 0
as in Python. For the same reason, negative indexing does not work.
It is best to think of Lua tables as mappings rather than arrays, even
for plain array tables.
.. code:: python
>>> table = lua.eval('{10,20,30,40}')
>>> table[1]
10
>>> table[4]
40
>>> list(table)
[1, 2, 3, 4]
>>> list(table.values())
[10, 20, 30, 40]
>>> len(table)
4
>>> mapping = lua.eval('{ [1] = -1 }')
>>> list(mapping)
[1]
>>> mapping = lua.eval('{ [20] = -20; [3] = -3 }')
>>> mapping[20]
-20
>>> mapping[3]
-3
>>> sorted(mapping.values())
[-20, -3]
>>> sorted(mapping.items())
[(3, -3), (20, -20)]
>>> mapping[-3] = 3 # -3 used as key, not index!
>>> mapping[-3]
3
>>> sorted(mapping)
[-3, 3, 20]
>>> sorted(mapping.items())
[(-3, 3), (3, -3), (20, -20)]
To simplify the table creation from Python, the ``LuaRuntime`` comes with
a helper method that creates a Lua table from Python arguments:
.. code:: python
>>> t = lua.table(1, 2, 3, 4)
>>> lupa.lua_type(t)
'table'
>>> list(t)
[1, 2, 3, 4]
>>> t = lua.table(1, 2, 3, 4, a=1, b=2)
>>> t[3]
3
>>> t['b']
2
A second helper method, ``.table_from()``, is new in Lupa 1.1 and accepts
any number of mappings and sequences/iterables as arguments. It collects
all values and key-value pairs and builds a single Lua table from them.
Any keys that appear in multiple mappings get overwritten with their last
value (going from left to right).
.. code:: python
>>> t = lua.table_from([1, 2, 3], {'a': 1, 'b': 2}, (4, 5), {'b': 42})
>>> t['b']
42
>>> t[5]
5
A lookup of non-existing keys or indices returns None (actually ``nil``
inside of Lua). A lookup is therefore more similar to the ``.get()``
method of Python dicts than to a mapping lookup in Python.
.. code:: python
>>> table[1000000] is None
True
>>> table['no such key'] is None
True
>>> mapping['no such key'] is None
True
Note that ``len()`` does the right thing for array tables but does not
work on mappings:
.. code:: python
>>> len(table)
4
>>> len(mapping)
0
This is because ``len()`` is based on the ``#`` (length) operator in
Lua and because of the way Lua defines the length of a table.
Remember that unset table indices always return ``nil``, including
indices outside of the table size. Thus, Lua basically looks for an
index that returns ``nil`` and returns the index before that. This
works well for array tables that do not contain ``nil`` values, gives
barely predictable results for tables with 'holes' and does not work
at all for mapping tables. For tables with both sequential and
mapping content, this ignores the mapping part completely.
Note that it is best not to rely on the behaviour of len() for
mappings. It might change in a later version of Lupa.
Similar to the table interface provided by Lua, Lupa also supports
attribute access to table members:
.. code:: python
>>> table = lua.eval('{ a=1, b=2 }')
>>> table.a, table.b
(1, 2)
>>> table.a == table['a']
True
This enables access to Lua 'methods' that are associated with a table,
as used by the standard library modules:
.. code:: python
>>> string = lua.eval('string') # get the 'string' library table
>>> print( string.lower('A') )
a
Python Callables
----------------
As discussed earlier, Lupa allows Lua scripts to call Python functions
and methods:
.. code:: python
>>> def add_one(num):
... return num + 1
>>> lua_func = lua.eval('function(num, py_func) return py_func(num) end')
>>> lua_func(48, add_one)
49
>>> class MyClass():
... def my_method(self):
... return 345
>>> obj = MyClass()
>>> lua_func = lua.eval('function(py_obj) return py_obj:my_method() end')
>>> lua_func(obj)
345
Lua doesn't have a dedicated syntax for named arguments, so by default
Python callables can only be called using positional arguments.
A common pattern for implementing named arguments in Lua is passing them
in a table as the first and only function argument. See
http://lua-users.org/wiki/NamedParameters for more details. Lupa supports
this pattern by providing two decorators: ``lupa.unpacks_lua_table``
for Python functions and ``lupa.unpacks_lua_table_method`` for methods
of Python objects.
Python functions/methods wrapped in these decorators can be called from
Lua code as ``func(foo, bar)``, ``func{foo=foo, bar=bar}``
or ``func{foo, bar=bar}``. Example:
.. code:: python
>>> @lupa.unpacks_lua_table
... def add(a, b):
... return a + b
>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a=a, b=b} end')
>>> lua_func(5, 6, add)
11
>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a, b=b} end')
>>> lua_func(5, 6, add)
11
If you do not control the function implementation, you can also just
manually wrap a callable object when passing it into Lupa:
.. code:: python
>>> import operator
>>> wrapped_py_add = lupa.unpacks_lua_table(operator.add)
>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a, b} end')
>>> lua_func(5, 6, wrapped_py_add)
11
There are some limitations:
1. Avoid using ``lupa.unpacks_lua_table`` and ``lupa.unpacks_lua_table_method``
for functions where the first argument can be a Lua table. In this case
``py_func{foo=bar}`` (which is the same as ``py_func({foo=bar})`` in Lua)
becomes ambiguous: it could mean either "call ``py_func`` with a named
``foo`` argument" or "call ``py_func`` with a positional ``{foo=bar}``
argument".
2. One should be careful with passing ``nil`` values to callables wrapped in
``lupa.unpacks_lua_table`` or ``lupa.unpacks_lua_table_method`` decorators.
Depending on the context, passing ``nil`` as a parameter can mean either
"omit a parameter" or "pass None". This even depends on the Lua version.
It is possible to use ``python.none`` instead of ``nil`` to pass None values
robustly. Arguments with ``nil`` values are also fine when standard braces
``func(a, b, c)`` syntax is used.
Because of these limitations lupa doesn't enable named arguments for all
Python callables automatically. Decorators allow to enable named arguments
on a per-callable basis.
Lua Coroutines
--------------
The next is an example of Lua coroutines. A wrapped Lua coroutine
behaves exactly like a Python coroutine. It needs to get created at
the beginning, either by using the ``.coroutine()`` method of a
function or by creating it in Lua code. Then, values can be sent into
it using the ``.send()`` method or it can be iterated over. Note that
the ``.throw()`` method is not supported, though.
.. code:: python
>>> lua_code = '''\
... function(N)
... for i=0,N do
... coroutine.yield( i%2 )
... end
... end
... '''
>>> lua = LuaRuntime()
>>> f = lua.eval(lua_code)
>>> gen = f.coroutine(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]
An example where values are passed into the coroutine using its
``.send()`` method:
.. code:: python
>>> lua_code = '''\
... function()
... local t,i = {},0
... local value = coroutine.yield()
... while value do
... t[i] = value
... i = i + 1
... value = coroutine.yield()
... end
... return t
... end
... '''
>>> f = lua.eval(lua_code)
>>> co = f.coroutine() # create coroutine
>>> co.send(None) # start coroutine (stops at first yield)
>>> for i in range(3):
... co.send(i*2)
>>> mapping = co.send(None) # loop termination signal
>>> sorted(mapping.items())
[(0, 0), (1, 2), (2, 4)]
It also works to create coroutines in Lua and to pass them back into
Python space:
.. code:: python
>>> lua_code = '''\
... function f(N)
... for i=0,N do
... coroutine.yield( i%2 )
... end
... end ;
... co1 = coroutine.create(f) ;
... co2 = coroutine.create(f) ;
...
... status, first_result = coroutine.resume(co2, 2) ; -- starting!
...
... return f, co1, co2, status, first_result
... '''
>>> lua = LuaRuntime()
>>> f, co, lua_gen, status, first_result = lua.execute(lua_code)
>>> # a running coroutine:
>>> status
True
>>> first_result
0
>>> list(lua_gen)
[1, 0]
>>> list(lua_gen)
[]
>>> # an uninitialised coroutine:
>>> gen = co(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]
>>> gen = co(2)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0)]
>>> # a plain function:
>>> gen = f.coroutine(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]
Threading
---------
The following example calculates a mandelbrot image in parallel
threads and displays the result in PIL. It is based on a `benchmark
implementation`_ for the `Computer Language Benchmarks Game`_.
.. _`Computer Language Benchmarks Game`: http://shootout.alioth.debian.org/u64/benchmark.php?test=all&lang=luajit&lang2=python3
.. _`benchmark implementation`: http://shootout.alioth.debian.org/u64/program.php?test=mandelbrot&lang=luajit&id=1
.. code:: python
lua_code = '''\
function(N, i, total)
local char, unpack = string.char, table.unpack
local result = ""
local M, ba, bb, buf = 2/N, 2^(N%8+1)-1, 2^(8-N%8), {}
local start_line, end_line = N/total * (i-1), N/total * i - 1
for y=start_line,end_line do
local Ci, b, p = y*M-1, 1, 0
for x=0,N-1 do
local Cr = x*M-1.5
local Zr, Zi, Zrq, Ziq = Cr, Ci, Cr*Cr, Ci*Ci
b = b + b
for i=1,49 do
Zi = Zr*Zi*2 + Ci
Zr = Zrq-Ziq + Cr
Ziq = Zi*Zi
Zrq = Zr*Zr
if Zrq+Ziq > 4.0 then b = b + 1; break; end
end
if b >= 256 then p = p + 1; buf[p] = 511 - b; b = 1; end
end
if b ~= 1 then p = p + 1; buf[p] = (ba-b)*bb; end
result = result .. char(unpack(buf, 1, p))
end
return result
end
'''
image_size = 1280 # == 1280 x 1280
thread_count = 8
from lupa import LuaRuntime
lua_funcs = [ LuaRuntime(encoding=None).eval(lua_code)
for _ in range(thread_count) ]
results = [None] * thread_count
def mandelbrot(i, lua_func):
results[i] = lua_func(image_size, i+1, thread_count)
import threading
threads = [ threading.Thread(target=mandelbrot, args=(i,lua_func))
for i, lua_func in enumerate(lua_funcs) ]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
result_buffer = b''.join(results)
# use Pillow to display the image
from PIL import Image
image = Image.fromstring('1', (image_size, image_size), result_buffer)
image.show()
Note how the example creates a separate ``LuaRuntime`` for each thread
to enable parallel execution. Each ``LuaRuntime`` is protected by a
global lock that prevents concurrent access to it. The low memory
footprint of Lua makes it reasonable to use multiple runtimes, but
this setup also means that values cannot easily be exchanged between
threads inside of Lua. They must either get copied through Python
space (passing table references will not work, either) or use some Lua
mechanism for explicit communication, such as a pipe or some kind of
shared memory setup.
Restricting Lua access to Python objects
----------------------------------------
..
>>> try: unicode = unicode
... except NameError: unicode = str
Lupa provides a simple mechanism to control access to Python objects.
Each attribute access can be passed through a filter function as
follows:
.. code:: python
>>> def filter_attribute_access(obj, attr_name, is_setting):
... if isinstance(attr_name, unicode):
... if not attr_name.startswith('_'):
... return attr_name
... raise AttributeError('access denied')
>>> lua = lupa.LuaRuntime(
... register_eval=False,
... attribute_filter=filter_attribute_access)
>>> func = lua.eval('function(x) return x.__class__ end')
>>> func(lua)
Traceback (most recent call last):
...
AttributeError: access denied
The ``is_setting`` flag indicates whether the attribute is being read
or set.
Note that the attributes of Python functions provide access to the
current ``globals()`` and therefore to the builtins etc. If you want
to safely restrict access to a known set of Python objects, it is best
to work with a whitelist of safe attribute names. One way to do that
could be to use a well selected list of dedicated API objects that you
provide to Lua code, and to only allow Python attribute access to the
set of public attribute/method names of these objects.
Since Lupa 1.0, you can alternatively provide dedicated getter and
setter function implementations for a ``LuaRuntime``:
.. code:: python
>>> def getter(obj, attr_name):
... if attr_name == 'yes':
... return getattr(obj, attr_name)
... raise AttributeError(
... 'not allowed to read attribute "%s"' % attr_name)
>>> def setter(obj, attr_name, value):
... if attr_name == 'put':
... setattr(obj, attr_name, value)
... return
... raise AttributeError(
... 'not allowed to write attribute "%s"' % attr_name)
>>> class X(object):
... yes = 123
... put = 'abc'
... noway = 2.1
>>> x = X()
>>> lua = lupa.LuaRuntime(attribute_handlers=(getter, setter))
>>> func = lua.eval('function(x) return x.yes end')
>>> func(x) # getting 'yes'
123
>>> func = lua.eval('function(x) x.put = "ABC"; end')
>>> func(x) # setting 'put'
>>> print(x.put)
ABC
>>> func = lua.eval('function(x) x.noway = 42; end')
>>> func(x) # setting 'noway'
Traceback (most recent call last):
...
AttributeError: not allowed to write attribute "noway"
Importing Lua binary modules
----------------------------
**This will usually work as is**, but here are the details, in case
anything goes wrong for you.
To use binary modules in Lua, you need to compile them against the
header files of the LuaJIT sources that you used to build Lupa, but do
not link them against the LuaJIT library.
Furthermore, CPython needs to enable global symbol visibility for
shared libraries before loading the Lupa module. This can be done by
calling ``sys.setdlopenflags(flag_values)``. Importing the ``lupa``
module will automatically try to set up the correct ``dlopen`` flags
if it can find the platform specific ``DLFCN`` Python module that
defines the necessary flag constants. In that case, using binary
modules in Lua should work out of the box.
If this setup fails, however, you have to set the flags manually.
When using the above configuration call, the argument ``flag_values``
must represent the sum of your system's values for ``RTLD_NEW`` and
``RTLD_GLOBAL``. If ``RTLD_NEW`` is 2 and ``RTLD_GLOBAL`` is 256, you
need to call ``sys.setdlopenflags(258)``.
Assuming that the Lua luaposix_ (``posix``) module is available, the
following should work on a Linux system:
.. code:: python
>>> import sys
>>> orig_dlflags = sys.getdlopenflags()
>>> sys.setdlopenflags(258)
>>> import lupa
>>> sys.setdlopenflags(orig_dlflags)
>>> lua = lupa.LuaRuntime()
>>> posix_module = lua.require('posix') # doctest: +SKIP
.. _luaposix: http://git.alpinelinux.org/cgit/luaposix
Building with different Lua versions
------------------------------------
The build is configured to automatically search for an installed version
of first LuaJIT and then Lua, and failing to find either, to use the bundled
LuaJIT or Lua version.
If you wish to build Lupa with a specific version of Lua, you can
configure the following options on setup:
.. list-table::
:widths: 20 35
:header-rows: 1
* - Option
- Description
* - ``--lua-lib <libfile>``
- Lua library file path, e.g. ``--lua-lib /usr/local/lib/lualib.a``
* - ``--lua-includes <incdir>``
- Lua include directory, e.g. ``--lua-includes /usr/local/include``
* - ``--use-bundle``
- Use bundled LuaJIT or Lua instead of searching for an installed version.
* - ``--no-bundle``
- Don't use the bundled LuaJIT/Lua, search for an installed version of LuaJIT or Lua,
e.g. using ``pkg-config``.
* - ``--no-lua-jit``
- Don't use or search for LuaJIT, only use or search Lua instead.
|