File: PKG-INFO

package info (click to toggle)
python-lupa 1.9%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,876 kB
  • sloc: python: 2,332; makefile: 7
file content (1586 lines) | stat: -rw-r--r-- 61,110 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
Metadata-Version: 1.2
Name: lupa
Version: 1.9
Summary: Python wrapper around Lua and LuaJIT
Home-page: https://github.com/scoder/lupa
Author: Stefan Behnel
Author-email: stefan_ml@behnel.de
Maintainer: Lupa-dev mailing list
Maintainer-email: lupa-dev@freelists.org
License: MIT style
Description: Lupa
        ====
        
        .. image:: logo/logo-220x200.png
        
        Lupa integrates the runtimes of Lua_ or LuaJIT2_ into CPython.
        It is a partial rewrite of LunaticPython_ in Cython_ with some
        additional features such as proper coroutine support.
        
        .. _Lua: http://lua.org/
        .. _LuaJIT2: http://luajit.org/
        .. _LunaticPython: http://labix.org/lunatic-python
        .. _Cython: http://cython.org
        
        For questions not answered here, please contact the `Lupa mailing list`_.
        
        .. _`Lupa mailing list`: http://www.freelists.org/list/lupa-dev
        
        .. contents:: :local:
        
        
        Major features
        --------------
        
        * separate Lua runtime states through a ``LuaRuntime`` class
        
        * Python coroutine wrapper for Lua coroutines
        
        * iteration support for Python objects in Lua and Lua objects in
          Python
        
        * proper encoding and decoding of strings (configurable per runtime,
          UTF-8 by default)
        
        * frees the GIL and supports threading in separate runtimes when
          calling into Lua
        
        * tested with Python 2.6/3.2 and later
        
        * written for LuaJIT2 (tested with LuaJIT 2.0.2), but also works
          with the normal Lua interpreter (5.1 and 5.2)
        
        * easy to hack on and extend as it is written in Cython, not C
        
        
        Why the name?
        -------------
        
        In Latin, "lupa" is a female wolf, as elegant and wild as it sounds.
        If you don't like this kind of straight forward allegory to an
        endangered species, you may also happily assume it's just an
        amalgamation of the phonetic sounds that start the words "Lua" and
        "Python", two from each to keep the balance.
        
        
        Why use it?
        -----------
        
        It complements Python very well.  Lua is a language as dynamic as
        Python, but LuaJIT compiles it to very fast machine code, sometimes
        faster than many statically compiled languages for computational code.
        The language runtime is very small and carefully designed for
        embedding.  The complete binary module of Lupa, including a statically
        linked LuaJIT2 runtime, only weighs some 700KB on a 64 bit machine.
        With standard Lua 5.1, it's less than 400KB.
        
        However, the Lua ecosystem lacks many of the batteries that Python
        readily includes, either directly in its standard library or as third
        party packages. This makes real-world Lua applications harder to write
        than equivalent Python applications. Lua is therefore not commonly
        used as primary language for large applications, but it makes for a
        fast, high-level and resource-friendly backup language inside of
        Python when raw speed is required and the edit-compile-run cycle of
        binary extension modules is too heavy and too static for agile
        development or hot-deployment.
        
        Lupa is a very fast and thin wrapper around Lua or LuaJIT.  It makes it
        easy to write dynamic Lua code that accompanies dynamic Python code by
        switching between the two languages at runtime, based on the tradeoff
        between simplicity and speed.
        
        
        Examples
        --------
        
        ..
              ## doctest helpers:
              >>> try: _ = sorted
              ... except NameError:
              ...     def sorted(seq):
              ...         l = list(seq)
              ...         l.sort()
              ...         return l
        
        .. code:: python
        
              >>> import lupa
              >>> from lupa import LuaRuntime
              >>> lua = LuaRuntime(unpack_returned_tuples=True)
        
              >>> lua.eval('1+1')
              2
        
              >>> lua_func = lua.eval('function(f, n) return f(n) end')
        
              >>> def py_add1(n): return n+1
              >>> lua_func(py_add1, 2)
              3
        
              >>> lua.eval('python.eval(" 2 ** 2 ")') == 4
              True
              >>> lua.eval('python.builtins.str(4)') == '4'
              True
        
        The function ``lua_type(obj)`` can be used to find out the type of a
        wrapped Lua object in Python code, as provided by Lua's ``type()``
        function:
        
        .. code:: python
        
              >>> lupa.lua_type(lua_func)
              'function'
              >>> lupa.lua_type(lua.eval('{}'))
              'table'
        
        To help in distinguishing between wrapped Lua objects and normal
        Python objects, it returns ``None`` for the latter:
        
        .. code:: python
        
              >>> lupa.lua_type(123) is None
              True
              >>> lupa.lua_type('abc') is None
              True
              >>> lupa.lua_type({}) is None
              True
        
        Note the flag ``unpack_returned_tuples=True`` that is passed to create
        the Lua runtime.  It is new in Lupa 0.21 and changes the behaviour of
        tuples that get returned by Python functions.  With this flag, they
        explode into separate Lua values:
        
        .. code:: python
        
              >>> lua.execute('a,b,c = python.eval("(1,2)")')
              >>> g = lua.globals()
              >>> g.a
              1
              >>> g.b
              2
              >>> g.c is None
              True
        
        When set to False, functions that return a tuple pass it through to the
        Lua code:
        
        .. code:: python
        
              >>> non_explode_lua = lupa.LuaRuntime(unpack_returned_tuples=False)
              >>> non_explode_lua.execute('a,b,c = python.eval("(1,2)")')
              >>> g = non_explode_lua.globals()
              >>> g.a
              (1, 2)
              >>> g.b is None
              True
              >>> g.c is None
              True
        
        Since the default behaviour (to not explode tuples) might change in a
        later version of Lupa, it is best to always pass this flag explicitly.
        
        
        Python objects in Lua
        ---------------------
        
        Python objects are either converted when passed into Lua (e.g.
        numbers and strings) or passed as wrapped object references.
        
        .. code:: python
        
              >>> wrapped_type = lua.globals().type     # Lua's own type() function
              >>> wrapped_type(1) == 'number'
              True
              >>> wrapped_type('abc') == 'string'
              True
        
        Wrapped Lua objects get unwrapped when they are passed back into Lua,
        and arbitrary Python objects get wrapped in different ways:
        
        .. code:: python
        
              >>> wrapped_type(wrapped_type) == 'function'  # unwrapped Lua function
              True
              >>> wrapped_type(len) == 'userdata'       # wrapped Python function
              True
              >>> wrapped_type([]) == 'userdata'        # wrapped Python object
              True
        
        Lua supports two main protocols on objects: calling and indexing.  It
        does not distinguish between attribute access and item access like
        Python does, so the Lua operations ``obj[x]`` and ``obj.x`` both map
        to indexing.  To decide which Python protocol to use for Lua wrapped
        objects, Lupa employs a simple heuristic.
        
        Pratically all Python objects allow attribute access, so if the object
        also has a ``__getitem__`` method, it is preferred when turning it
        into an indexable Lua object.  Otherwise, it becomes a simple object
        that uses attribute access for indexing from inside Lua.
        
        Obviously, this heuristic will fail to provide the required behaviour
        in many cases, e.g. when attribute access is required to an object
        that happens to support item access.  To be explicit about the
        protocol that should be used, Lupa provides the helper functions
        ``as_attrgetter()`` and ``as_itemgetter()`` that restrict the view on
        an object to a certain protocol, both from Python and from inside
        Lua:
        
        .. code:: python
        
              >>> lua_func = lua.eval('function(obj) return obj["get"] end')
              >>> d = {'get' : 'value'}
        
              >>> value = lua_func(d)
              >>> value == d['get'] == 'value'
              True
        
              >>> value = lua_func( lupa.as_itemgetter(d) )
              >>> value == d['get'] == 'value'
              True
        
              >>> dict_get = lua_func( lupa.as_attrgetter(d) )
              >>> dict_get == d.get
              True
              >>> dict_get('get') == d.get('get') == 'value'
              True
        
              >>> lua_func = lua.eval(
              ...     'function(obj) return python.as_attrgetter(obj)["get"] end')
              >>> dict_get = lua_func(d)
              >>> dict_get('get') == d.get('get') == 'value'
              True
        
        Note that unlike Lua function objects, callable Python objects support
        indexing in Lua:
        
        .. code:: python
        
              >>> def py_func(): pass
              >>> py_func.ATTR = 2
        
              >>> lua_func = lua.eval('function(obj) return obj.ATTR end')
              >>> lua_func(py_func)
              2
              >>> lua_func = lua.eval(
              ...     'function(obj) return python.as_attrgetter(obj).ATTR end')
              >>> lua_func(py_func)
              2
              >>> lua_func = lua.eval(
              ...     'function(obj) return python.as_attrgetter(obj)["ATTR"] end')
              >>> lua_func(py_func)
              2
        
        
        Iteration in Lua
        ----------------
        
        Iteration over Python objects from Lua's for-loop is fully supported.
        However, Python iterables need to be converted using one of the
        utility functions which are described here.  This is similar to the
        functions like ``pairs()`` in Lua.
        
        To iterate over a plain Python iterable, use the ``python.iter()``
        function.  For example, you can manually copy a Python list into a Lua
        table like this:
        
        .. code:: python
        
              >>> lua_copy = lua.eval('''
              ...     function(L)
              ...         local t, i = {}, 1
              ...         for item in python.iter(L) do
              ...             t[i] = item
              ...             i = i + 1
              ...         end
              ...         return t
              ...     end
              ... ''')
        
              >>> table = lua_copy([1,2,3,4])
              >>> len(table)
              4
              >>> table[1]   # Lua indexing
              1
        
        Python's ``enumerate()`` function is also supported, so the above
        could be simplified to:
        
        .. code:: python
        
              >>> lua_copy = lua.eval('''
              ...     function(L)
              ...         local t = {}
              ...         for index, item in python.enumerate(L) do
              ...             t[ index+1 ] = item
              ...         end
              ...         return t
              ...     end
              ... ''')
        
              >>> table = lua_copy([1,2,3,4])
              >>> len(table)
              4
              >>> table[1]   # Lua indexing
              1
        
        For iterators that return tuples, such as ``dict.iteritems()``, it is
        convenient to use the special ``python.iterex()`` function that
        automatically explodes the tuple items into separate Lua arguments:
        
        .. code:: python
        
              >>> lua_copy = lua.eval('''
              ...     function(d)
              ...         local t = {}
              ...         for key, value in python.iterex(d.items()) do
              ...             t[key] = value
              ...         end
              ...         return t
              ...     end
              ... ''')
        
              >>> d = dict(a=1, b=2, c=3)
              >>> table = lua_copy( lupa.as_attrgetter(d) )
              >>> table['b']
              2
        
        Note that accessing the ``d.items`` method from Lua requires passing
        the dict as ``attrgetter``.  Otherwise, attribute access in Lua would
        use the ``getitem`` protocol of Python dicts and look up ``d['items']``
        instead.
        
        
        None vs. nil
        ------------
        
        While ``None`` in Python and ``nil`` in Lua differ in their semantics, they
        usually just mean the same thing: no value.  Lupa therefore tries to map one
        directly to the other whenever possible:
        
        .. code:: python
        
              >>> lua.eval('nil') is None
              True
              >>> is_nil = lua.eval('function(x) return x == nil end')
              >>> is_nil(None)
              True
        
        The only place where this cannot work is during iteration, because Lua
        considers a ``nil`` value the termination marker of iterators.  Therefore,
        Lupa special cases ``None`` values here and replaces them by a constant
        ``python.none`` instead of returning ``nil``:
        
        .. code:: python
        
              >>> _ = lua.require("table")
              >>> func = lua.eval('''
              ...     function(items)
              ...         local t = {}
              ...         for value in python.iter(items) do
              ...             table.insert(t, value == python.none)
              ...         end
              ...         return t
              ...     end
              ... ''')
        
              >>> items = [1, None ,2]
              >>> list(func(items).values())
              [False, True, False]
        
        Lupa avoids this value escaping whenever it's obviously not necessary.
        Thus, when unpacking tuples during iteration, only the first value will
        be subject to ``python.none`` replacement, as Lua does not look at the
        other items for loop termination anymore.  And on ``enumerate()``
        iteration, the first value is known to be always a number and never None,
        so no replacement is needed.
        
        .. code:: python
        
              >>> func = lua.eval('''
              ...     function(items)
              ...         for a, b, c, d in python.iterex(items) do
              ...             return {a == python.none, a == nil,   -->  a == python.none
              ...                     b == python.none, b == nil,   -->  b == nil
              ...                     c == python.none, c == nil,   -->  c == nil
              ...                     d == python.none, d == nil}   -->  d == nil ...
              ...         end
              ...     end
              ... ''')
        
              >>> items = [(None, None, None, None)]
              >>> list(func(items).values())
              [True, False, False, True, False, True, False, True]
        
              >>> items = [(None, None)]   # note: no values for c/d => nil in Lua
              >>> list(func(items).values())
              [True, False, False, True, False, True, False, True]
        
        
        Note that this behaviour changed in Lupa 1.0.  Previously, the ``python.none``
        replacement was done in more places, which made it not always very predictable.
        
        
        Lua Tables
        ----------
        
        Lua tables mimic Python's mapping protocol.  For the special case of
        array tables, Lua automatically inserts integer indices as keys into
        the table.  Therefore, indexing starts from 1 as in Lua instead of 0
        as in Python.  For the same reason, negative indexing does not work.
        It is best to think of Lua tables as mappings rather than arrays, even
        for plain array tables.
        
        .. code:: python
        
              >>> table = lua.eval('{10,20,30,40}')
              >>> table[1]
              10
              >>> table[4]
              40
              >>> list(table)
              [1, 2, 3, 4]
              >>> list(table.values())
              [10, 20, 30, 40]
              >>> len(table)
              4
        
              >>> mapping = lua.eval('{ [1] = -1 }')
              >>> list(mapping)
              [1]
        
              >>> mapping = lua.eval('{ [20] = -20; [3] = -3 }')
              >>> mapping[20]
              -20
              >>> mapping[3]
              -3
              >>> sorted(mapping.values())
              [-20, -3]
              >>> sorted(mapping.items())
              [(3, -3), (20, -20)]
        
              >>> mapping[-3] = 3     # -3 used as key, not index!
              >>> mapping[-3]
              3
              >>> sorted(mapping)
              [-3, 3, 20]
              >>> sorted(mapping.items())
              [(-3, 3), (3, -3), (20, -20)]
        
        To simplify the table creation from Python, the ``LuaRuntime`` comes with
        a helper method that creates a Lua table from Python arguments:
        
        .. code:: python
        
              >>> t = lua.table(1, 2, 3, 4)
              >>> lupa.lua_type(t)
              'table'
              >>> list(t)
              [1, 2, 3, 4]
        
              >>> t = lua.table(1, 2, 3, 4, a=1, b=2)
              >>> t[3]
              3
              >>> t['b']
              2
        
        A second helper method, ``.table_from()``, is new in Lupa 1.1 and accepts
        any number of mappings and sequences/iterables as arguments.  It collects
        all values and key-value pairs and builds a single Lua table from them.
        Any keys that appear in multiple mappings get overwritten with their last
        value (going from left to right).
        
        .. code:: python
        
              >>> t = lua.table_from([1, 2, 3], {'a': 1, 'b': 2}, (4, 5), {'b': 42})
              >>> t['b']
              42
              >>> t[5]
              5
        
        A lookup of non-existing keys or indices returns None (actually ``nil``
        inside of Lua).  A lookup is therefore more similar to the ``.get()``
        method of Python dicts than to a mapping lookup in Python.
        
        .. code:: python
        
              >>> table[1000000] is None
              True
              >>> table['no such key'] is None
              True
              >>> mapping['no such key'] is None
              True
        
        Note that ``len()`` does the right thing for array tables but does not
        work on mappings:
        
        .. code:: python
        
              >>> len(table)
              4
              >>> len(mapping)
              0
        
        This is because ``len()`` is based on the ``#`` (length) operator in
        Lua and because of the way Lua defines the length of a table.
        Remember that unset table indices always return ``nil``, including
        indices outside of the table size.  Thus, Lua basically looks for an
        index that returns ``nil`` and returns the index before that.  This
        works well for array tables that do not contain ``nil`` values, gives
        barely predictable results for tables with 'holes' and does not work
        at all for mapping tables.  For tables with both sequential and
        mapping content, this ignores the mapping part completely.
        
        Note that it is best not to rely on the behaviour of len() for
        mappings.  It might change in a later version of Lupa.
        
        Similar to the table interface provided by Lua, Lupa also supports
        attribute access to table members:
        
        .. code:: python
        
              >>> table = lua.eval('{ a=1, b=2 }')
              >>> table.a, table.b
              (1, 2)
              >>> table.a == table['a']
              True
        
        This enables access to Lua 'methods' that are associated with a table,
        as used by the standard library modules:
        
        .. code:: python
        
              >>> string = lua.eval('string')    # get the 'string' library table
              >>> print( string.lower('A') )
              a
        
        
        Python Callables
        ----------------
        
        As discussed earlier, Lupa allows Lua scripts to call Python functions
        and methods:
        
        .. code:: python
        
              >>> def add_one(num):
              ...     return num + 1
              >>> lua_func = lua.eval('function(num, py_func) return py_func(num) end')
              >>> lua_func(48, add_one)
              49
        
              >>> class MyClass():
              ...     def my_method(self):
              ...         return 345
              >>> obj = MyClass()
              >>> lua_func = lua.eval('function(py_obj) return py_obj:my_method() end')
              >>> lua_func(obj)
              345
        
        Lua doesn't have a dedicated syntax for named arguments, so by default
        Python callables can only be called using positional arguments.
        
        A common pattern for implementing named arguments in Lua is passing them
        in a table as the first and only function argument.  See
        http://lua-users.org/wiki/NamedParameters for more details.  Lupa supports
        this pattern by providing two decorators: ``lupa.unpacks_lua_table``
        for Python functions and ``lupa.unpacks_lua_table_method`` for methods
        of Python objects.
        
        Python functions/methods wrapped in these decorators can be called from
        Lua code as ``func(foo, bar)``, ``func{foo=foo, bar=bar}``
        or ``func{foo, bar=bar}``.  Example:
        
        .. code:: python
        
              >>> @lupa.unpacks_lua_table
              ... def add(a, b):
              ...     return a + b
              >>> lua_func = lua.eval('function(a, b, py_func) return py_func{a=a, b=b} end')
              >>> lua_func(5, 6, add)
              11
              >>> lua_func = lua.eval('function(a, b, py_func) return py_func{a, b=b} end')
              >>> lua_func(5, 6, add)
              11
        
        If you do not control the function implementation, you can also just
        manually wrap a callable object when passing it into Lupa:
        
        .. code:: python
        
              >>> import operator
              >>> wrapped_py_add = lupa.unpacks_lua_table(operator.add)
        
              >>> lua_func = lua.eval('function(a, b, py_func) return py_func{a, b} end')
              >>> lua_func(5, 6, wrapped_py_add)
              11
        
        There are some limitations:
        
        1. Avoid using ``lupa.unpacks_lua_table`` and ``lupa.unpacks_lua_table_method``
           for functions where the first argument can be a Lua table.  In this case
           ``py_func{foo=bar}`` (which is the same as ``py_func({foo=bar})`` in Lua)
           becomes ambiguous: it could mean either "call ``py_func`` with a named
           ``foo`` argument" or "call ``py_func`` with a positional ``{foo=bar}``
           argument".
        
        2. One should be careful with passing ``nil`` values to callables wrapped in
           ``lupa.unpacks_lua_table`` or ``lupa.unpacks_lua_table_method`` decorators.
           Depending on the context, passing ``nil`` as a parameter can mean either
           "omit a parameter" or "pass None".  This even depends on the Lua version.
        
           It is possible to use ``python.none`` instead of ``nil`` to pass None values
           robustly.  Arguments with ``nil`` values are also fine when standard braces
           ``func(a, b, c)`` syntax is used.
        
        Because of these limitations lupa doesn't enable named arguments for all
        Python callables automatically.  Decorators allow to enable named arguments
        on a per-callable basis.
        
        
        Lua Coroutines
        --------------
        
        The next is an example of Lua coroutines.  A wrapped Lua coroutine
        behaves exactly like a Python coroutine.  It needs to get created at
        the beginning, either by using the ``.coroutine()`` method of a
        function or by creating it in Lua code.  Then, values can be sent into
        it using the ``.send()`` method or it can be iterated over.  Note that
        the ``.throw()`` method is not supported, though.
        
        .. code:: python
        
              >>> lua_code = '''\
              ...     function(N)
              ...         for i=0,N do
              ...             coroutine.yield( i%2 )
              ...         end
              ...     end
              ... '''
              >>> lua = LuaRuntime()
              >>> f = lua.eval(lua_code)
        
              >>> gen = f.coroutine(4)
              >>> list(enumerate(gen))
              [(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]
        
        An example where values are passed into the coroutine using its
        ``.send()`` method:
        
        .. code:: python
        
              >>> lua_code = '''\
              ...     function()
              ...         local t,i = {},0
              ...         local value = coroutine.yield()
              ...         while value do
              ...             t[i] = value
              ...             i = i + 1
              ...             value = coroutine.yield()
              ...         end
              ...         return t
              ...     end
              ... '''
              >>> f = lua.eval(lua_code)
        
              >>> co = f.coroutine()   # create coroutine
              >>> co.send(None)        # start coroutine (stops at first yield)
        
              >>> for i in range(3):
              ...     co.send(i*2)
        
              >>> mapping = co.send(None)   # loop termination signal
              >>> sorted(mapping.items())
              [(0, 0), (1, 2), (2, 4)]
        
        It also works to create coroutines in Lua and to pass them back into
        Python space:
        
        .. code:: python
        
              >>> lua_code = '''\
              ...   function f(N)
              ...         for i=0,N do
              ...             coroutine.yield( i%2 )
              ...         end
              ...   end ;
              ...   co1 = coroutine.create(f) ;
              ...   co2 = coroutine.create(f) ;
              ...
              ...   status, first_result = coroutine.resume(co2, 2) ;   -- starting!
              ...
              ...   return f, co1, co2, status, first_result
              ... '''
        
              >>> lua = LuaRuntime()
              >>> f, co, lua_gen, status, first_result = lua.execute(lua_code)
        
              >>> # a running coroutine:
        
              >>> status
              True
              >>> first_result
              0
              >>> list(lua_gen)
              [1, 0]
              >>> list(lua_gen)
              []
        
              >>> # an uninitialised coroutine:
        
              >>> gen = co(4)
              >>> list(enumerate(gen))
              [(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]
        
              >>> gen = co(2)
              >>> list(enumerate(gen))
              [(0, 0), (1, 1), (2, 0)]
        
              >>> # a plain function:
        
              >>> gen = f.coroutine(4)
              >>> list(enumerate(gen))
              [(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]
        
        
        Threading
        ---------
        
        The following example calculates a mandelbrot image in parallel
        threads and displays the result in PIL. It is based on a `benchmark
        implementation`_ for the `Computer Language Benchmarks Game`_.
        
        .. _`Computer Language Benchmarks Game`: http://shootout.alioth.debian.org/u64/benchmark.php?test=all&lang=luajit&lang2=python3
        .. _`benchmark implementation`: http://shootout.alioth.debian.org/u64/program.php?test=mandelbrot&lang=luajit&id=1
        
        .. code:: python
        
            lua_code = '''\
                function(N, i, total)
                    local char, unpack = string.char, table.unpack
                    local result = ""
                    local M, ba, bb, buf = 2/N, 2^(N%8+1)-1, 2^(8-N%8), {}
                    local start_line, end_line = N/total * (i-1), N/total * i - 1
                    for y=start_line,end_line do
                        local Ci, b, p = y*M-1, 1, 0
                        for x=0,N-1 do
                            local Cr = x*M-1.5
                            local Zr, Zi, Zrq, Ziq = Cr, Ci, Cr*Cr, Ci*Ci
                            b = b + b
                            for i=1,49 do
                                Zi = Zr*Zi*2 + Ci
                                Zr = Zrq-Ziq + Cr
                                Ziq = Zi*Zi
                                Zrq = Zr*Zr
                                if Zrq+Ziq > 4.0 then b = b + 1; break; end
                            end
                            if b >= 256 then p = p + 1; buf[p] = 511 - b; b = 1; end
                        end
                        if b ~= 1 then p = p + 1; buf[p] = (ba-b)*bb; end
                        result = result .. char(unpack(buf, 1, p))
                    end
                    return result
                end
            '''
        
            image_size = 1280   # == 1280 x 1280
            thread_count = 8
        
            from lupa import LuaRuntime
            lua_funcs = [ LuaRuntime(encoding=None).eval(lua_code)
                          for _ in range(thread_count) ]
        
            results = [None] * thread_count
            def mandelbrot(i, lua_func):
                results[i] = lua_func(image_size, i+1, thread_count)
        
            import threading
            threads = [ threading.Thread(target=mandelbrot, args=(i,lua_func))
                        for i, lua_func in enumerate(lua_funcs) ]
            for thread in threads:
                thread.start()
            for thread in threads:
                thread.join()
        
            result_buffer = b''.join(results)
        
            # use Pillow to display the image
            from PIL import Image
            image = Image.fromstring('1', (image_size, image_size), result_buffer)
            image.show()
        
        Note how the example creates a separate ``LuaRuntime`` for each thread
        to enable parallel execution.  Each ``LuaRuntime`` is protected by a
        global lock that prevents concurrent access to it.  The low memory
        footprint of Lua makes it reasonable to use multiple runtimes, but
        this setup also means that values cannot easily be exchanged between
        threads inside of Lua.  They must either get copied through Python
        space (passing table references will not work, either) or use some Lua
        mechanism for explicit communication, such as a pipe or some kind of
        shared memory setup.
        
        
        Restricting Lua access to Python objects
        ----------------------------------------
        
        ..
                >>> try: unicode = unicode
                ... except NameError: unicode = str
        
        Lupa provides a simple mechanism to control access to Python objects.
        Each attribute access can be passed through a filter function as
        follows:
        
        .. code:: python
        
                >>> def filter_attribute_access(obj, attr_name, is_setting):
                ...     if isinstance(attr_name, unicode):
                ...         if not attr_name.startswith('_'):
                ...             return attr_name
                ...     raise AttributeError('access denied')
        
                >>> lua = lupa.LuaRuntime(
                ...           register_eval=False,
                ...           attribute_filter=filter_attribute_access)
                >>> func = lua.eval('function(x) return x.__class__ end')
                >>> func(lua)
                Traceback (most recent call last):
                 ...
                AttributeError: access denied
        
        The ``is_setting`` flag indicates whether the attribute is being read
        or set.
        
        Note that the attributes of Python functions provide access to the
        current ``globals()`` and therefore to the builtins etc.  If you want
        to safely restrict access to a known set of Python objects, it is best
        to work with a whitelist of safe attribute names.  One way to do that
        could be to use a well selected list of dedicated API objects that you
        provide to Lua code, and to only allow Python attribute access to the
        set of public attribute/method names of these objects.
        
        Since Lupa 1.0, you can alternatively provide dedicated getter and
        setter function implementations for a ``LuaRuntime``:
        
        .. code:: python
        
                >>> def getter(obj, attr_name):
                ...     if attr_name == 'yes':
                ...         return getattr(obj, attr_name)
                ...     raise AttributeError(
                ...         'not allowed to read attribute "%s"' % attr_name)
        
                >>> def setter(obj, attr_name, value):
                ...     if attr_name == 'put':
                ...         setattr(obj, attr_name, value)
                ...         return
                ...     raise AttributeError(
                ...         'not allowed to write attribute "%s"' % attr_name)
        
                >>> class X(object):
                ...     yes = 123
                ...     put = 'abc'
                ...     noway = 2.1
        
                >>> x = X()
        
                >>> lua = lupa.LuaRuntime(attribute_handlers=(getter, setter))
                >>> func = lua.eval('function(x) return x.yes end')
                >>> func(x)  # getting 'yes'
                123
                >>> func = lua.eval('function(x) x.put = "ABC"; end')
                >>> func(x)  # setting 'put'
                >>> print(x.put)
                ABC
                >>> func = lua.eval('function(x) x.noway = 42; end')
                >>> func(x)  # setting 'noway'
                Traceback (most recent call last):
                 ...
                AttributeError: not allowed to write attribute "noway"
        
        
        Importing Lua binary modules
        ----------------------------
        
        **This will usually work as is**, but here are the details, in case
        anything goes wrong for you.
        
        To use binary modules in Lua, you need to compile them against the
        header files of the LuaJIT sources that you used to build Lupa, but do
        not link them against the LuaJIT library.
        
        Furthermore, CPython needs to enable global symbol visibility for
        shared libraries before loading the Lupa module.  This can be done by
        calling ``sys.setdlopenflags(flag_values)``.  Importing the ``lupa``
        module will automatically try to set up the correct ``dlopen`` flags
        if it can find the platform specific ``DLFCN`` Python module that
        defines the necessary flag constants.  In that case, using binary
        modules in Lua should work out of the box.
        
        If this setup fails, however, you have to set the flags manually.
        When using the above configuration call, the argument ``flag_values``
        must represent the sum of your system's values for ``RTLD_NEW`` and
        ``RTLD_GLOBAL``.  If ``RTLD_NEW`` is 2 and ``RTLD_GLOBAL`` is 256, you
        need to call ``sys.setdlopenflags(258)``.
        
        Assuming that the Lua luaposix_ (``posix``) module is available, the
        following should work on a Linux system:
        
        .. code:: python
        
              >>> import sys
              >>> orig_dlflags = sys.getdlopenflags()
              >>> sys.setdlopenflags(258)
              >>> import lupa
              >>> sys.setdlopenflags(orig_dlflags)
        
              >>> lua = lupa.LuaRuntime()
              >>> posix_module = lua.require('posix')     # doctest: +SKIP
        
        .. _luaposix: http://git.alpinelinux.org/cgit/luaposix
        
        
        Installing lupa
        ===============
        
        Building with LuaJIT2
        ---------------------
        
        #) Download and unpack lupa
        
           http://pypi.python.org/pypi/lupa
        
        #) Download LuaJIT2
        
           http://luajit.org/download.html
        
        #) Unpack the archive into the lupa base directory, e.g.::
        
             .../lupa-0.1/LuaJIT-2.0.2
        
        #) Build LuaJIT::
        
             cd LuaJIT-2.0.2
             make
             cd ..
        
           If you need specific C compiler flags, pass them to ``make`` as follows::
        
             make CFLAGS="..."
        
           For trickier target platforms like Windows and MacOS-X, please see
           the official `installation instructions for LuaJIT`_.
        
           NOTE: When building on Windows, make sure that lua51.lib is made in addition
           to lua51.dll. The MSVC build produces this file, MinGW does NOT.
        
        #) Build lupa::
        
             python setup.py install
        
           Or any other distutils target of your choice, such as ``build``
           or one of the ``bdist`` targets.  See the `distutils
           documentation`_ for help, also the `hints on building extension
           modules`_.
        
           Note that on 64bit MacOS-X installations, the following additional
           compiler flags are reportedly required due to the embedded LuaJIT::
        
             -pagezero_size 10000 -image_base 100000000
        
           You can find additional installation hints for MacOS-X in this
           `somewhat unclear blog post`_, which may or may not tell you at
           which point in the installation process to provide these flags.
        
           Also, on 64bit MacOS-X, you will typically have to set the
           environment variable ``ARCHFLAGS`` to make sure it only builds
           for your system instead of trying to generate a fat binary with
           both 32bit and 64bit support::
        
             export ARCHFLAGS="-arch x86_64"
        
           Note that this applies to both LuaJIT and Lupa, so make sure
           you try a clean build of everything if you forgot to set it
           initially.
        
        .. _`installation instructions for LuaJIT`: http://luajit.org/install.html
        .. _`somewhat unclear blog post`: http://t-p-j.blogspot.com/2010/11/lupa-on-os-x-with-macports-python-26.html
        .. _`distutils documentation`: http://docs.python.org/install/index.html#install-index
        .. _`hints on building extension modules`: http://docs.python.org/install/index.html#building-extensions-tips-and-tricks
        
        
        Building with Lua 5.1
        ---------------------
        
        Reportedly, it also works to use Lupa with the standard (non-JIT) Lua
        runtime.  To that end, install Lua 5.1 instead of LuaJIT2, including
        any development packages (header files etc.).
        
        On systems that use the "pkg-config" configuration mechanism, Lupa's
        setup.py will pick up either LuaJIT2 or Lua automatically, with a
        preference for LuaJIT2 if it is found.  Pass the ``--no-luajit`` option
        to the setup.py script if you have both installed but do not want to
        use LuaJIT2.
        
        On other systems, you may have to supply the build parameters
        externally, e.g. using environment variables or by changing the
        setup.py script manually.  Pass the ``--no-luajit`` option to the
        setup.py script in order to ignore the failure you get when neither
        LuaJIT2 nor Lua are found automatically.
        
        For further information, read this mailing list post:
        
        http://article.gmane.org/gmane.comp.python.lupa.devel/31
        
        
        Installing lupa from packages
        =============================
        
        Debian/Ubuntu + Lua 5.2
        -----------------------
        
        #) Install Lua 5.2 development package::
        
             $ apt-get install liblua5.2-dev
        
        #) Install lupa::
        
             $ pip install lupa
        
        Debian/Ubuntu + LuaJIT2
        -----------------------
        
        #) Install LuaJIT2 development package::
        
             $ apt-get install libluajit-5.1-dev
        
        #) Install lupa::
        
             $ pip install lupa
        
        Depending on OS version, you might get an older LuaJIT2 version.
        
        OS X + Lua 5.2 + Homebrew
        -------------------------
        
        #) Install Lua::
        
             $ brew install lua
        
        #) Install pkg-config::
        
             $ brew install pkg-config
        
        #) Install lupa::
        
             $ pip install lupa
        
        
        
        Lupa change log
        ===============
        
        1.9 (2019-12-21)
        ----------------
        
        * Build against Lua 5.3 if available.
        
        * Use Lua 5.3.5 in binary wheels and as bundled Lua.
        
        * GH#129: Fix Lua module loading in Python 3.x.
        
        * GH#126: Fix build on Linux systems that install Lua as "lua52" package.
        
        * Built with Cython 0.29.14 for better Py3.8 compatibility.
        
        
        1.8 (2019-02-01)
        ----------------
        
        * GH#107: Fix a deprecated import in Py3.
        
        * Built with Cython 0.29.3 for better Py3.7 compatibility.
        
        
        1.7 (2018-08-06)
        ----------------
        
        * GH#103: Provide wheels for MS Windows and fix MSVC build on Py2.7.
        
        
        1.6 (2017-12-15)
        ----------------
        
        * GH#95: Improved compatibility with Lua 5.3.
          (patch by TitanSnow)
        
        
        1.5 (2017-09-16)
        ----------------
        
        * GH#93: New method ``LuaRuntime.compile()`` to compile Lua code
          without executing it.
          (patch by TitanSnow)
        
        * GH#91: Lua 5.3 is bundled in the source distribution to simplify
          one-shot installs.
          (patch by TitanSnow)
        
        * GH#87: Lua stack trace is included in output in debug mode.
          (patch by aaiyer)
        
        * GH#78: Allow Lua code to intercept Python exceptions.
          (patch by Sergey Dobrov)
        
        * Built with Cython 0.26.1.
        
        
        1.4 (2016-12-10)
        ----------------
        
        * GH#82: Lua coroutines were using the wrong runtime state
          (patch by Sergey Dobrov)
        
        * GH#81: copy locally provided Lua DLL into installed package on Windows
          (patch by Gareth Coles)
        
        * built with Cython 0.25.2
        
        
        1.3 (2016-04-12)
        ----------------
        
        * GH#70: ``eval()`` and ``execute()`` accept optional positional arguments
          (patch by John Vandenberg)
        
        * GH#65: calling ``str()`` on a Python object from Lua could fail if the
          ``LuaRuntime`` is set up without auto-encoding (patch by Mikhail Korobov)
        
        * GH#63: attribute/keyword names were not properly encoded if the
          ``LuaRuntime`` is set up without auto-encoding (patch by Mikhail Korobov)
        
        * built with Cython 0.24
        
        
        1.2 (2015-10-10)
        ----------------
        
        * callbacks returned from Lua coroutines were incorrectly mixing
          coroutine state with global Lua state (patch by Mikhail Korobov)
        
        * availability of ``python.builtins`` in Lua can be disabled via
          ``LuaRuntime`` option.
        
        * built with Cython 0.23.4
        
        
        1.1 (2014-11-21)
        ----------------
        
        * new module function ``lupa.lua_type()`` that returns the Lua type of
          a wrapped object as string, or ``None`` for normal Python objects
        
        * new helper method ``LuaRuntime.table_from(...)`` that creates a Lua
          table from one or more Python mappings and/or sequences
        
        * new ``lupa.unpacks_lua_table`` and ``lupa.unpacks_lua_table_method``
          decorators to allow calling Python functions from Lua using named
          arguments
        
        * fix a hang on shutdown where the LuaRuntime failed to deallocate due
          to reference cycles
        
        * Lupa now plays more nicely with other Lua extensions that create
          userdata objects
        
        
        1.0.1 (2014-10-11)
        ------------------
        
        * fix a crash when requesting attributes of wrapped Lua coroutine objects
        
        * looking up attributes on Lua objects that do not support it now always
          raises an AttributeError instead of sometimes raising a TypeError depending
          on the attribute name
        
        
        1.0 (2014-09-28)
        ----------------
        
        * NOTE: this release includes the major backwards incompatible changes listed
          below.  It is believed that they simplify the interaction between Python code
          and Lua code by more strongly following idiomatic Lua on the Lua side.
        
          * Instead of passing a wrapped ``python.none`` object into Lua, ``None``
            return values are now mapped to ``nil``, making them more straight forward
            to handle in Lua code.  This makes the behaviour more consistent, as it
            was previously somewhat arbitrary where ``none`` could appear and where a
            ``nil`` value was used.  The only remaining exception is during iteration,
            where the first returned value must not be ``nil`` in Lua, or otherwise
            the loop terminates prematurely.  To prevent this, any ``None`` value
            that the iterator returns, or any first item in exploded tuples that is
            ``None``, is still mapped to ``python.none``. Any further values
            returned in the same iteration will be mapped to ``nil`` if they are
            ``None``, not to ``none``.  This means that only the first argument
            needs to be manually checked for this special case.  For the
            ``enumerate()`` iterator, the counter is never ``None`` and thus the
            following unpacked items will never be mapped to ``python.none``.
        
          * When ``unpack_returned_tuples=True``, iteration now also unpacks tuple
            values, including ``enumerate()`` iteration, which yields a flat sequence
            of counter and unpacked values.
        
          * When calling bound Python methods from Lua as "obj:meth()", Lupa now
            prevents Python from prepending the self argument a second time, so that
            the Python method is now called as "obj.meth()".  Previously, it was called
            as "obj.meth(obj)".  Note that this can be undesired when the object itself
            is explicitly passed as first argument from Lua, e.g. when calling
            "func(obj)" where "func" is "obj.meth", but these constellations should be
            rare.  As a work-around for this case, user code can wrap the bound method
            in another function so that the final call comes from Python.
        
        * garbage collection works for reference cycles that span both runtimes,
          Python and Lua
        
        * calling from Python into Lua and back into Python did not clean up the
          Lua call arguments before the innermost call, so that they could leak
          into the nested Python call or its return arguments
        
        * support for Lua 5.2 (in addition to Lua 5.1 and LuaJIT 2.0)
        
        * Lua tables support Python's "del" statement for item deletion
          (patch by Jason Fried)
        
        * Attribute lookup can use a more fine-grained control mechanism by
          implementing explicit getter and setter functions for a LuaRuntime
          (``attribute_handlers`` argument).  Patch by Brian Moe.
        
        * item assignments/lookups on Lua objects from Python no longer
          special case double underscore names (as opposed to attribute lookups)
        
        
        0.21 (2014-02-12)
        -----------------
        
        * some garbage collection issues were cleaned up using new Cython features
        
        * new ``LuaRuntime`` option ``unpack_returned_tuples`` which automatically
          unpacks tuples returned from Python functions into separate Lua objects
          (instead of returning a single Python tuple object)
        
        * some internal wrapper classes were removed from the module API
        
        * Windows build fixes
        
        * Py3.x build fixes
        
        * support for building with Lua 5.1 instead of LuaJIT (setup.py --no-luajit)
        
        * no longer uses Cython by default when building from released sources (pass
          ``--with-cython`` to explicitly request a rebuild)
        
        * requires Cython 0.20+ when building from unreleased sources
        
        * built with Cython 0.20.1
        
        
        0.20 (2011-05-22)
        -----------------
        
        * fix "deallocating None" crash while iterating over Lua tables in
          Python code
        
        * support for filtering attribute access to Python objects for Lua
          code
        
        * fix: setting source encoding for Lua code was broken
        
        
        0.19 (2011-03-06)
        -----------------
        
        * fix serious resource leak when creating multiple LuaRuntime instances
        
        * portability fix for binary module importing
        
        
        0.18 (2010-11-06)
        -----------------
        
        * fix iteration by returning ``Py_None`` object for ``None`` instead
          of ``nil``, which would terminate the iteration
        
        * when converting Python values to Lua, represent ``None`` as a
          ``Py_None`` object in places where ``nil`` has a special meaning,
          but leave it as ``nil`` where it doesn't hurt
        
        * support for counter start value in ``python.enumerate()``
        
        * native implementation for ``python.enumerate()`` that is several
          times faster
        
        * much faster Lua iteration over Python objects
        
        
        0.17 (2010-11-05)
        -----------------
        
        * new helper function ``python.enumerate()`` in Lua that returns a Lua
          iterator for a Python object and adds the 0-based index to each
          item.
        
        * new helper function ``python.iterex()`` in Lua that returns a Lua
          iterator for a Python object and unpacks any tuples that the
          iterator yields.
        
        * new helper function ``python.iter()`` in Lua that returns a Lua
          iterator for a Python object.
        
        * reestablished the ``python.as_function()`` helper function for Lua
          code as it can be needed in cases where Lua cannot determine how to
          run a Python function.
        
        
        0.16 (2010-09-03)
        -----------------
        
        * dropped ``python.as_function()`` helper function for Lua as all
          Python objects are callable from Lua now (potentially raising a
          ``TypeError`` at call time if they are not callable)
        
        * fix regression in 0.13 and later where ordinary Lua functions failed
          to print due to an accidentally used meta table
        
        * fix crash when calling ``str()`` on wrapped Lua objects without
          metatable
        
        
        0.15 (2010-09-02)
        -----------------
        
        * support for loading binary Lua modules on systems that support it
        
        
        0.14 (2010-08-31)
        -----------------
        
        * relicensed to the MIT license used by LuaJIT2 to simplify licensing
          considerations
        
        
        0.13.1 (2010-08-30)
        -------------------
        
        * fix Cython generated C file using Cython 0.13
        
        
        0.13 (2010-08-29)
        -----------------
        
        * fixed undefined behaviour on ``str(lua_object)`` when the object's
          ``__tostring()`` meta method fails
        
        * removed redundant "error:" prefix from ``LuaError`` messages
        
        * access to Python's ``python.builtins`` from Lua code
        
        * more generic wrapping rules for Python objects based on supported
          protocols (callable, getitem, getattr)
        
        * new helper functions ``as_attrgetter()`` and ``as_itemgetter()`` to
          specify the Python object protocol used by Lua indexing when
          wrapping Python objects in Python code
        
        * new helper functions ``python.as_attrgetter()``,
          ``python.as_itemgetter()`` and ``python.as_function()`` to specify
          the Python object protocol used by Lua indexing of Python objects in
          Lua code
        
        * item and attribute access for Python objects from Lua code
        
        
        0.12 (2010-08-16)
        -----------------
        
        * fix Lua stack leak during table iteration
        
        * fix lost Lua object reference after iteration
        
        
        0.11 (2010-08-07)
        -----------------
        
        * error reporting on Lua syntax errors failed to clean up the stack so
          that errors could leak into the next Lua run
        
        * Lua error messages were not properly decoded
        
        
        0.10 (2010-07-27)
        -----------------
        
        * much faster locking of the LuaRuntime, especially in the single
          threaded case (see
          http://code.activestate.com/recipes/577336-fast-re-entrant-optimistic-lock-implemented-in-cyt/)
        
        * fixed several error handling problems when executing Python code
          inside of Lua
        
        
        0.9 (2010-07-23)
        ----------------
        
        * fixed Python special double-underscore method access on LuaObject
          instances
        
        * Lua coroutine support through dedicated wrapper classes, including
          Python iteration support.  In Python space, Lua coroutines behave
          exactly like Python generators.
        
        
        0.8 (2010-07-21)
        ----------------
        
        * support for returning multiple values from Lua evaluation
        
        * ``repr()`` support for Lua objects
        
        * ``LuaRuntime.table()`` method for creating Lua tables from Python
          space
        
        * encoding fix for ``str(LuaObject)``
        
        
        0.7 (2010-07-18)
        ----------------
        
        * ``LuaRuntime.require()`` and ``LuaRuntime.globals()`` methods
        
        * renamed ``LuaRuntime.run()`` to ``LuaRuntime.execute()``
        
        * support for ``len()``, ``setattr()`` and subscripting of Lua objects
        
        * provide all built-in Lua libraries in ``LuaRuntime``, including
          support for library loading
        
        * fixed a thread locking issue
        
        * fix passing Lua objects back into the runtime from Python space
        
        
        0.6 (2010-07-18)
        ----------------
        
        * Python iteration support for Lua objects (e.g. tables)
        
        * threading fixes
        
        * fix compile warnings
        
        
        0.5 (2010-07-14)
        ----------------
        
        * explicit encoding options per LuaRuntime instance to decode/encode
          strings and Lua code
        
        
        0.4 (2010-07-14)
        ----------------
        
        * attribute read access on Lua objects, e.g. to read Lua table values
          from Python
        
        * str() on Lua objects
        
        * include .hg repository in source downloads
        
        * added missing files to source distribution
        
        
        0.3 (2010-07-13)
        ----------------
        
        * fix several threading issues
        
        * safely free the GIL when calling into Lua
        
        
        0.2 (2010-07-13)
        ----------------
        
        * propagate Python exceptions through Lua calls
        
        
        0.1 (2010-07-12)
        ----------------
        
        * first public release
        
        
        License
        =======
        
        Lupa
        ----
        
        Copyright (c) 2010-2017 Stefan Behnel.  All rights reserved.
        
        Permission is hereby granted, free of charge, to any person obtaining a copy
        of this software and associated documentation files (the "Software"), to deal
        in the Software without restriction, including without limitation the rights
        to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
        copies of the Software, and to permit persons to whom the Software is
        furnished to do so, subject to the following conditions:
        
        The above copyright notice and this permission notice shall be included in
        all copies or substantial portions of the Software.
        
        THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
        IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
        FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
        AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
        LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
        OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
        THE SOFTWARE.
        
        Lua
        ---
        
        (See https://www.lua.org/license.html)
        
        Copyright © 1994–2017 Lua.org, PUC-Rio.
        
        Permission is hereby granted, free of charge, to any person obtaining a copy
        of this software and associated documentation files (the "Software"), to deal
        in the Software without restriction, including without limitation the rights
        to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
        copies of the Software, and to permit persons to whom the Software is
        furnished to do so, subject to the following conditions:
        
        The above copyright notice and this permission notice shall be included in
        all copies or substantial portions of the Software.
        
        THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
        IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
        FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
        AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
        LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
        OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
        THE SOFTWARE.
        
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Cython
Classifier: Programming Language :: Python :: 2
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Other Scripting Engines
Classifier: Operating System :: OS Independent
Classifier: Topic :: Software Development