1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
|
Metadata-Version: 2.2
Name: lupa
Version: 2.4
Summary: Python wrapper around Lua and LuaJIT
Home-page: https://github.com/scoder/lupa
Author: Stefan Behnel
Author-email: stefan_ml@behnel.de
Maintainer: Lupa-dev mailing list
Maintainer-email: lupa-dev@freelists.org
License: MIT style
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Cython
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Lua
Classifier: Programming Language :: Other Scripting Engines
Classifier: Operating System :: OS Independent
Classifier: Topic :: Software Development
License-File: LICENSE.txt
Dynamic: author
Dynamic: author-email
Dynamic: classifier
Dynamic: description
Dynamic: home-page
Dynamic: license
Dynamic: maintainer
Dynamic: maintainer-email
Dynamic: summary
Lupa
====
.. image:: logo/logo-220x200.png
Lupa integrates the runtimes of Lua_ or LuaJIT2_ into CPython.
It is a partial rewrite of LunaticPython_ in Cython_ with some
additional features such as proper coroutine support.
.. _Lua: http://lua.org/
.. _LuaJIT2: http://luajit.org/
.. _LunaticPython: http://labix.org/lunatic-python
.. _Cython: http://cython.org
For questions not answered here, please contact the `Lupa mailing list`_.
.. _`Lupa mailing list`: http://www.freelists.org/list/lupa-dev
.. contents:: :local:
Major features
--------------
* separate Lua runtime states through a ``LuaRuntime`` class
* Python coroutine wrapper for Lua coroutines
* iteration support for Python objects in Lua and Lua objects in
Python
* proper encoding and decoding of strings (configurable per runtime,
UTF-8 by default)
* frees the GIL and supports threading in separate runtimes when
calling into Lua
* tested with Python 2.7/3.6 and later
* ships with Lua 5.1, 5.2, 5.3 and 5.4
as well as LuaJIT 2.0 and 2.1 on systems that support it.
* easy to hack on and extend as it is written in Cython, not C
Why the name?
-------------
In Latin, "lupa" is a female wolf, as elegant and wild as it sounds.
If you don't like this kind of straight forward allegory to an
endangered species, you may also happily assume it's just an
amalgamation of the phonetic sounds that start the words "Lua" and
"Python", two from each to keep the balance.
Why use it?
-----------
It complements Python very well. Lua is a language as dynamic as
Python, but LuaJIT compiles it to very fast machine code, sometimes
faster than many statically compiled languages for computational code.
The language runtime is very small and carefully designed for
embedding. The complete binary module of Lupa, including a statically
linked LuaJIT2 runtime, only weighs some 800KB on a 64 bit machine.
With standard Lua 5.2, it's less than 600KB.
However, the Lua ecosystem lacks many of the batteries that Python
readily includes, either directly in its standard library or as third
party packages. This makes real-world Lua applications harder to write
than equivalent Python applications. Lua is therefore not commonly
used as primary language for large applications, but it makes for a
fast, high-level and resource-friendly backup language inside of
Python when raw speed is required and the edit-compile-run cycle of
binary extension modules is too heavy and too static for agile
development or hot-deployment.
Lupa is a very fast and thin wrapper around Lua or LuaJIT. It makes it
easy to write dynamic Lua code that accompanies dynamic Python code by
switching between the two languages at runtime, based on the tradeoff
between simplicity and speed.
Which Lua version?
------------------
The binary wheels include different Lua versions as well as LuaJIT, if supported.
By default, ``import lupa`` uses the latest Lua version, but you can choose
a specific one via import:
.. code:: python
try:
import lupa.luajit21 as lupa
except ImportError:
try:
import lupa.lua54 as lupa
except ImportError:
try:
import lupa.lua53 as lupa
except ImportError:
import lupa
print(f"Using {lupa.LuaRuntime().lua_implementation} (compiled with {lupa.LUA_VERSION})")
Examples
--------
..
>>> import lupa.lua54 as lupa
## doctest helpers:
>>> try: _ = sorted
... except NameError:
... def sorted(seq):
... l = list(seq)
... l.sort()
... return l
.. code:: python
>>> from lupa.lua54 import LuaRuntime
>>> lua = LuaRuntime(unpack_returned_tuples=True)
>>> lua.eval('1+1')
2
>>> lua_func = lua.eval('function(f, n) return f(n) end')
>>> def py_add1(n): return n+1
>>> lua_func(py_add1, 2)
3
>>> lua.eval('python.eval(" 2 ** 2 ")') == 4
True
>>> lua.eval('python.builtins.str(4)') == '4'
True
The function ``lua_type(obj)`` can be used to find out the type of a
wrapped Lua object in Python code, as provided by Lua's ``type()``
function:
.. code:: python
>>> lupa.lua_type(lua_func)
'function'
>>> lupa.lua_type(lua.eval('{}'))
'table'
To help in distinguishing between wrapped Lua objects and normal
Python objects, it returns ``None`` for the latter:
.. code:: python
>>> lupa.lua_type(123) is None
True
>>> lupa.lua_type('abc') is None
True
>>> lupa.lua_type({}) is None
True
Note the flag ``unpack_returned_tuples=True`` that is passed to create
the Lua runtime. It is new in Lupa 0.21 and changes the behaviour of
tuples that get returned by Python functions. With this flag, they
explode into separate Lua values:
.. code:: python
>>> lua.execute('a,b,c = python.eval("(1,2)")')
>>> g = lua.globals()
>>> g.a
1
>>> g.b
2
>>> g.c is None
True
When set to False, functions that return a tuple pass it through to the
Lua code:
.. code:: python
>>> non_explode_lua = lupa.LuaRuntime(unpack_returned_tuples=False)
>>> non_explode_lua.execute('a,b,c = python.eval("(1,2)")')
>>> g = non_explode_lua.globals()
>>> g.a
(1, 2)
>>> g.b is None
True
>>> g.c is None
True
Since the default behaviour (to not explode tuples) might change in a
later version of Lupa, it is best to always pass this flag explicitly.
Python objects in Lua
---------------------
Python objects are either converted when passed into Lua (e.g.
numbers and strings) or passed as wrapped object references.
.. code:: python
>>> wrapped_type = lua.globals().type # Lua's own type() function
>>> wrapped_type(1) == 'number'
True
>>> wrapped_type('abc') == 'string'
True
Wrapped Lua objects get unwrapped when they are passed back into Lua,
and arbitrary Python objects get wrapped in different ways:
.. code:: python
>>> wrapped_type(wrapped_type) == 'function' # unwrapped Lua function
True
>>> wrapped_type(len) == 'userdata' # wrapped Python function
True
>>> wrapped_type([]) == 'userdata' # wrapped Python object
True
Lua supports two main protocols on objects: calling and indexing. It
does not distinguish between attribute access and item access like
Python does, so the Lua operations ``obj[x]`` and ``obj.x`` both map
to indexing. To decide which Python protocol to use for Lua wrapped
objects, Lupa employs a simple heuristic.
Pratically all Python objects allow attribute access, so if the object
also has a ``__getitem__`` method, it is preferred when turning it
into an indexable Lua object. Otherwise, it becomes a simple object
that uses attribute access for indexing from inside Lua.
Obviously, this heuristic will fail to provide the required behaviour
in many cases, e.g. when attribute access is required to an object
that happens to support item access. To be explicit about the
protocol that should be used, Lupa provides the helper functions
``as_attrgetter()`` and ``as_itemgetter()`` that restrict the view on
an object to a certain protocol, both from Python and from inside
Lua:
.. code:: python
>>> lua_func = lua.eval('function(obj) return obj["get"] end')
>>> d = {'get' : 'value'}
>>> value = lua_func(d)
>>> value == d['get'] == 'value'
True
>>> value = lua_func( lupa.as_itemgetter(d) )
>>> value == d['get'] == 'value'
True
>>> dict_get = lua_func( lupa.as_attrgetter(d) )
>>> dict_get == d.get
True
>>> dict_get('get') == d.get('get') == 'value'
True
>>> lua_func = lua.eval(
... 'function(obj) return python.as_attrgetter(obj)["get"] end')
>>> dict_get = lua_func(d)
>>> dict_get('get') == d.get('get') == 'value'
True
Note that unlike Lua function objects, callable Python objects support
indexing in Lua:
.. code:: python
>>> def py_func(): pass
>>> py_func.ATTR = 2
>>> lua_func = lua.eval('function(obj) return obj.ATTR end')
>>> lua_func(py_func)
2
>>> lua_func = lua.eval(
... 'function(obj) return python.as_attrgetter(obj).ATTR end')
>>> lua_func(py_func)
2
>>> lua_func = lua.eval(
... 'function(obj) return python.as_attrgetter(obj)["ATTR"] end')
>>> lua_func(py_func)
2
Iteration in Lua
----------------
Iteration over Python objects from Lua's for-loop is fully supported.
However, Python iterables need to be converted using one of the
utility functions which are described here. This is similar to the
functions like ``pairs()`` in Lua.
To iterate over a plain Python iterable, use the ``python.iter()``
function. For example, you can manually copy a Python list into a Lua
table like this:
.. code:: python
>>> lua_copy = lua.eval('''
... function(L)
... local t, i = {}, 1
... for item in python.iter(L) do
... t[i] = item
... i = i + 1
... end
... return t
... end
... ''')
>>> table = lua_copy([1,2,3,4])
>>> len(table)
4
>>> table[1] # Lua indexing
1
Python's ``enumerate()`` function is also supported, so the above
could be simplified to:
.. code:: python
>>> lua_copy = lua.eval('''
... function(L)
... local t = {}
... for index, item in python.enumerate(L) do
... t[ index+1 ] = item
... end
... return t
... end
... ''')
>>> table = lua_copy([1,2,3,4])
>>> len(table)
4
>>> table[1] # Lua indexing
1
For iterators that return tuples, such as ``dict.iteritems()``, it is
convenient to use the special ``python.iterex()`` function that
automatically explodes the tuple items into separate Lua arguments:
.. code:: python
>>> lua_copy = lua.eval('''
... function(d)
... local t = {}
... for key, value in python.iterex(d.items()) do
... t[key] = value
... end
... return t
... end
... ''')
>>> d = dict(a=1, b=2, c=3)
>>> table = lua_copy( lupa.as_attrgetter(d) )
>>> table['b']
2
Note that accessing the ``d.items`` method from Lua requires passing
the dict as ``attrgetter``. Otherwise, attribute access in Lua would
use the ``getitem`` protocol of Python dicts and look up ``d['items']``
instead.
None vs. nil
------------
While ``None`` in Python and ``nil`` in Lua differ in their semantics, they
usually just mean the same thing: no value. Lupa therefore tries to map one
directly to the other whenever possible:
.. code:: python
>>> lua.eval('nil') is None
True
>>> is_nil = lua.eval('function(x) return x == nil end')
>>> is_nil(None)
True
The only place where this cannot work is during iteration, because Lua
considers a ``nil`` value the termination marker of iterators. Therefore,
Lupa special cases ``None`` values here and replaces them by a constant
``python.none`` instead of returning ``nil``:
.. code:: python
>>> _ = lua.require("table")
>>> func = lua.eval('''
... function(items)
... local t = {}
... for value in python.iter(items) do
... table.insert(t, value == python.none)
... end
... return t
... end
... ''')
>>> items = [1, None ,2]
>>> list(func(items).values())
[False, True, False]
Lupa avoids this value escaping whenever it's obviously not necessary.
Thus, when unpacking tuples during iteration, only the first value will
be subject to ``python.none`` replacement, as Lua does not look at the
other items for loop termination anymore. And on ``enumerate()``
iteration, the first value is known to be always a number and never None,
so no replacement is needed.
.. code:: python
>>> func = lua.eval('''
... function(items)
... for a, b, c, d in python.iterex(items) do
... return {a == python.none, a == nil, --> a == python.none
... b == python.none, b == nil, --> b == nil
... c == python.none, c == nil, --> c == nil
... d == python.none, d == nil} --> d == nil ...
... end
... end
... ''')
>>> items = [(None, None, None, None)]
>>> list(func(items).values())
[True, False, False, True, False, True, False, True]
>>> items = [(None, None)] # note: no values for c/d => nil in Lua
>>> list(func(items).values())
[True, False, False, True, False, True, False, True]
Note that this behaviour changed in Lupa 1.0. Previously, the ``python.none``
replacement was done in more places, which made it not always very predictable.
Lua Tables
----------
Lua tables mimic Python's mapping protocol. For the special case of
array tables, Lua automatically inserts integer indices as keys into
the table. Therefore, indexing starts from 1 as in Lua instead of 0
as in Python. For the same reason, negative indexing does not work.
It is best to think of Lua tables as mappings rather than arrays, even
for plain array tables.
.. code:: python
>>> table = lua.eval('{10,20,30,40}')
>>> table[1]
10
>>> table[4]
40
>>> list(table)
[1, 2, 3, 4]
>>> dict(table)
{1: 10, 2: 20, 3: 30, 4: 40}
>>> list(table.values())
[10, 20, 30, 40]
>>> len(table)
4
>>> mapping = lua.eval('{ [1] = -1 }')
>>> list(mapping)
[1]
>>> mapping = lua.eval('{ [20] = -20; [3] = -3 }')
>>> mapping[20]
-20
>>> mapping[3]
-3
>>> sorted(mapping.values())
[-20, -3]
>>> sorted(mapping.items())
[(3, -3), (20, -20)]
>>> mapping[-3] = 3 # -3 used as key, not index!
>>> mapping[-3]
3
>>> sorted(mapping)
[-3, 3, 20]
>>> sorted(mapping.items())
[(-3, 3), (3, -3), (20, -20)]
To simplify the table creation from Python, the ``LuaRuntime`` comes with
a helper method that creates a Lua table from Python arguments:
.. code:: python
>>> t = lua.table(10, 20, 30, 40)
>>> lupa.lua_type(t)
'table'
>>> list(t)
[1, 2, 3, 4]
>>> list(t.values())
[10, 20, 30, 40]
>>> t = lua.table(10, 20, 30, 40, a=1, b=2)
>>> t[3]
30
>>> t['b']
2
A second helper method, ``.table_from()``, was added in Lupa 1.1 and accepts
any number of mappings and sequences/iterables as arguments. It collects
all values and key-value pairs and builds a single Lua table from them.
Any keys that appear in multiple mappings get overwritten with their last
value (going from left to right).
.. code:: python
>>> t = lua.table_from([10, 20, 30], {'a': 11, 'b': 22}, (40, 50), {'b': 42})
>>> t['a']
11
>>> t['b']
42
>>> t[5]
50
>>> sorted(t.values())
[10, 11, 20, 30, 40, 42, 50]
Since Lupa 2.1, passing ``recursive=True`` will map data structures recursively
to Lua tables.
.. code:: python
>>> t = lua.table_from(
... [
... # t1:
... [
... [10, 20, 30],
... {'a': 11, 'b': 22}
... ],
... # t2:
... [
... (40, 50),
... {'b': 42}
... ]
... ],
... recursive=True
... )
>>> t1, t2 = t.values()
>>> list(t1[1].values())
[10, 20, 30]
>>> t1[2]['a']
11
>>> t1[2]['b']
22
>>> t2[2]['b']
42
>>> list(t1[1].values())
[10, 20, 30]
>>> list(t2[1].values())
[40, 50]
A lookup of non-existing keys or indices returns None (actually ``nil``
inside of Lua). A lookup is therefore more similar to the ``.get()``
method of Python dicts than to a mapping lookup in Python.
.. code:: python
>>> table = lua.table(10, 20, 30, 40)
>>> table[1000000] is None
True
>>> table['no such key'] is None
True
>>> mapping = lua.eval('{ [20] = -20; [3] = -3 }')
>>> mapping['no such key'] is None
True
Note that ``len()`` does the right thing for array tables but does not
work on mappings:
.. code:: python
>>> len(table)
4
>>> len(mapping)
0
This is because ``len()`` is based on the ``#`` (length) operator in
Lua and because of the way Lua defines the length of a table.
Remember that unset table indices always return ``nil``, including
indices outside of the table size. Thus, Lua basically looks for an
index that returns ``nil`` and returns the index before that. This
works well for array tables that do not contain ``nil`` values, gives
barely predictable results for tables with 'holes' and does not work
at all for mapping tables. For tables with both sequential and
mapping content, this ignores the mapping part completely.
Note that it is best not to rely on the behaviour of len() for
mappings. It might change in a later version of Lupa.
Similar to the table interface provided by Lua, Lupa also supports
attribute access to table members:
.. code:: python
>>> table = lua.eval('{ a=1, b=2 }')
>>> table.a, table.b
(1, 2)
>>> table.a == table['a']
True
This enables access to Lua 'methods' that are associated with a table,
as used by the standard library modules:
.. code:: python
>>> string = lua.eval('string') # get the 'string' library table
>>> print( string.lower('A') )
a
Python Callables
----------------
As discussed earlier, Lupa allows Lua scripts to call Python functions
and methods:
.. code:: python
>>> def add_one(num):
... return num + 1
>>> lua_func = lua.eval('function(num, py_func) return py_func(num) end')
>>> lua_func(48, add_one)
49
>>> class MyClass():
... def my_method(self):
... return 345
>>> obj = MyClass()
>>> lua_func = lua.eval('function(py_obj) return py_obj:my_method() end')
>>> lua_func(obj)
345
Lua doesn't have a dedicated syntax for named arguments, so by default
Python callables can only be called using positional arguments.
A common pattern for implementing named arguments in Lua is passing them
in a table as the first and only function argument. See
http://lua-users.org/wiki/NamedParameters for more details. Lupa supports
this pattern by providing two decorators: ``lupa.unpacks_lua_table``
for Python functions and ``lupa.unpacks_lua_table_method`` for methods
of Python objects.
Python functions/methods wrapped in these decorators can be called from
Lua code as ``func(foo, bar)``, ``func{foo=foo, bar=bar}``
or ``func{foo, bar=bar}``. Example:
.. code:: python
>>> @lupa.unpacks_lua_table
... def add(a, b):
... return a + b
>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a=a, b=b} end')
>>> lua_func(5, 6, add)
11
>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a, b=b} end')
>>> lua_func(5, 6, add)
11
If you do not control the function implementation, you can also just
manually wrap a callable object when passing it into Lupa:
.. code:: python
>>> import operator
>>> wrapped_py_add = lupa.unpacks_lua_table(operator.add)
>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a, b} end')
>>> lua_func(5, 6, wrapped_py_add)
11
There are some limitations:
1. Avoid using ``lupa.unpacks_lua_table`` and ``lupa.unpacks_lua_table_method``
for functions where the first argument can be a Lua table. In this case
``py_func{foo=bar}`` (which is the same as ``py_func({foo=bar})`` in Lua)
becomes ambiguous: it could mean either "call ``py_func`` with a named
``foo`` argument" or "call ``py_func`` with a positional ``{foo=bar}``
argument".
2. One should be careful with passing ``nil`` values to callables wrapped in
``lupa.unpacks_lua_table`` or ``lupa.unpacks_lua_table_method`` decorators.
Depending on the context, passing ``nil`` as a parameter can mean either
"omit a parameter" or "pass None". This even depends on the Lua version.
It is possible to use ``python.none`` instead of ``nil`` to pass None values
robustly. Arguments with ``nil`` values are also fine when standard braces
``func(a, b, c)`` syntax is used.
Because of these limitations lupa doesn't enable named arguments for all
Python callables automatically. Decorators allow to enable named arguments
on a per-callable basis.
Lua Coroutines
--------------
The next is an example of Lua coroutines. A wrapped Lua coroutine
behaves exactly like a Python coroutine. It needs to get created at
the beginning, either by using the ``.coroutine()`` method of a
function or by creating it in Lua code. Then, values can be sent into
it using the ``.send()`` method or it can be iterated over. Note that
the ``.throw()`` method is not supported, though.
.. code:: python
>>> lua_code = '''\
... function(N)
... for i=0,N do
... coroutine.yield( i%2 )
... end
... end
... '''
>>> lua = LuaRuntime()
>>> f = lua.eval(lua_code)
>>> gen = f.coroutine(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]
An example where values are passed into the coroutine using its
``.send()`` method:
.. code:: python
>>> lua_code = '''\
... function()
... local t,i = {},0
... local value = coroutine.yield()
... while value do
... t[i] = value
... i = i + 1
... value = coroutine.yield()
... end
... return t
... end
... '''
>>> f = lua.eval(lua_code)
>>> co = f.coroutine() # create coroutine
>>> co.send(None) # start coroutine (stops at first yield)
>>> for i in range(3):
... co.send(i*2)
>>> mapping = co.send(None) # loop termination signal
>>> sorted(mapping.items())
[(0, 0), (1, 2), (2, 4)]
It also works to create coroutines in Lua and to pass them back into
Python space:
.. code:: python
>>> lua_code = '''\
... function f(N)
... for i=0,N do
... coroutine.yield( i%2 )
... end
... end ;
... co1 = coroutine.create(f) ;
... co2 = coroutine.create(f) ;
...
... status, first_result = coroutine.resume(co2, 2) ; -- starting!
...
... return f, co1, co2, status, first_result
... '''
>>> lua = LuaRuntime()
>>> f, co, lua_gen, status, first_result = lua.execute(lua_code)
>>> # a running coroutine:
>>> status
True
>>> first_result
0
>>> list(lua_gen)
[1, 0]
>>> list(lua_gen)
[]
>>> # an uninitialised coroutine:
>>> gen = co(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]
>>> gen = co(2)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0)]
>>> # a plain function:
>>> gen = f.coroutine(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]
Threading
---------
The following example calculates a mandelbrot image in parallel
threads and displays the result in PIL. It is based on a `benchmark
implementation`_ for the `Computer Language Benchmarks Game`_.
.. _`Computer Language Benchmarks Game`: http://shootout.alioth.debian.org/u64/benchmark.php?test=all&lang=luajit&lang2=python3
.. _`benchmark implementation`: http://shootout.alioth.debian.org/u64/program.php?test=mandelbrot&lang=luajit&id=1
.. code:: python
lua_code = '''\
function(N, i, total)
local char, unpack = string.char, table.unpack
local result = ""
local M, ba, bb, buf = 2/N, 2^(N%8+1)-1, 2^(8-N%8), {}
local start_line, end_line = N/total * (i-1), N/total * i - 1
for y=start_line,end_line do
local Ci, b, p = y*M-1, 1, 0
for x=0,N-1 do
local Cr = x*M-1.5
local Zr, Zi, Zrq, Ziq = Cr, Ci, Cr*Cr, Ci*Ci
b = b + b
for i=1,49 do
Zi = Zr*Zi*2 + Ci
Zr = Zrq-Ziq + Cr
Ziq = Zi*Zi
Zrq = Zr*Zr
if Zrq+Ziq > 4.0 then b = b + 1; break; end
end
if b >= 256 then p = p + 1; buf[p] = 511 - b; b = 1; end
end
if b ~= 1 then p = p + 1; buf[p] = (ba-b)*bb; end
result = result .. char(unpack(buf, 1, p))
end
return result
end
'''
image_size = 1280 # == 1280 x 1280
thread_count = 8
from lupa import LuaRuntime
lua_funcs = [ LuaRuntime(encoding=None).eval(lua_code)
for _ in range(thread_count) ]
results = [None] * thread_count
def mandelbrot(i, lua_func):
results[i] = lua_func(image_size, i+1, thread_count)
import threading
threads = [ threading.Thread(target=mandelbrot, args=(i,lua_func))
for i, lua_func in enumerate(lua_funcs) ]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
result_buffer = b''.join(results)
# use Pillow to display the image
from PIL import Image
image = Image.frombytes('1', (image_size, image_size), result_buffer)
image.show()
Note how the example creates a separate ``LuaRuntime`` for each thread
to enable parallel execution. Each ``LuaRuntime`` is protected by a
global lock that prevents concurrent access to it. The low memory
footprint of Lua makes it reasonable to use multiple runtimes, but
this setup also means that values cannot easily be exchanged between
threads inside of Lua. They must either get copied through Python
space (passing table references will not work, either) or use some Lua
mechanism for explicit communication, such as a pipe or some kind of
shared memory setup.
Restricting Lua access to Python objects
----------------------------------------
..
>>> try: unicode = unicode
... except NameError: unicode = str
Lupa provides a simple mechanism to control access to Python objects.
Each attribute access can be passed through a filter function as
follows:
.. code:: python
>>> def filter_attribute_access(obj, attr_name, is_setting):
... if isinstance(attr_name, unicode):
... if not attr_name.startswith('_'):
... return attr_name
... raise AttributeError('access denied')
>>> lua = lupa.LuaRuntime(
... register_eval=False,
... attribute_filter=filter_attribute_access)
>>> func = lua.eval('function(x) return x.__class__ end')
>>> func(lua)
Traceback (most recent call last):
...
AttributeError: access denied
The ``is_setting`` flag indicates whether the attribute is being read
or set.
Note that the attributes of Python functions provide access to the
current ``globals()`` and therefore to the builtins etc. If you want
to safely restrict access to a known set of Python objects, it is best
to work with a whitelist of safe attribute names. One way to do that
could be to use a well selected list of dedicated API objects that you
provide to Lua code, and to only allow Python attribute access to the
set of public attribute/method names of these objects.
Since Lupa 1.0, you can alternatively provide dedicated getter and
setter function implementations for a ``LuaRuntime``:
.. code:: python
>>> def getter(obj, attr_name):
... if attr_name == 'yes':
... return getattr(obj, attr_name)
... raise AttributeError(
... 'not allowed to read attribute "%s"' % attr_name)
>>> def setter(obj, attr_name, value):
... if attr_name == 'put':
... setattr(obj, attr_name, value)
... return
... raise AttributeError(
... 'not allowed to write attribute "%s"' % attr_name)
>>> class X(object):
... yes = 123
... put = 'abc'
... noway = 2.1
>>> x = X()
>>> lua = lupa.LuaRuntime(attribute_handlers=(getter, setter))
>>> func = lua.eval('function(x) return x.yes end')
>>> func(x) # getting 'yes'
123
>>> func = lua.eval('function(x) x.put = "ABC"; end')
>>> func(x) # setting 'put'
>>> print(x.put)
ABC
>>> func = lua.eval('function(x) x.noway = 42; end')
>>> func(x) # setting 'noway'
Traceback (most recent call last):
...
AttributeError: not allowed to write attribute "noway"
Restricting Lua Memory Usage
----------------------------
Lupa provides a simple mechanism to control the maximum memory
usage of the Lua Runtime since version 2.0.
By default Lupa does not interfere with Lua's memory allocation, to opt-in
you must set the ``max_memory`` when creating the LuaRuntime.
The ``LuaRuntime`` provides three methods for controlling and reading the
memory usage:
1. ``get_memory_used(total=False)`` to get the current memory
usage of the LuaRuntime.
2. ``get_max_memory(total=False)`` to get the current memory limit.
``0`` means there is no memory limitation.
3. ``set_max_memory(max_memory, total=False)`` to change the memory limit.
Values below or equal to 0 mean no limit.
There is always some memory used by the LuaRuntime itself (around ~20KiB,
depending on your lua version and other factors) which is excluded from all
calculations unless you specify ``total=True``.
.. code:: python
>>> from lupa import lua52
>>> lua = lua52.LuaRuntime(max_memory=0) # 0 for unlimited, default is None
>>> lua.get_memory_used() # memory used by your code
0
>>> total_lua_memory = lua.get_memory_used(total=True) # includes memory used by the runtime itself
>>> assert total_lua_memory > 0 # exact amount depends on your lua version and other factors
Lua code hitting the memory limit will receive memory errors:
.. code:: python
>>> lua.set_max_memory(100)
>>> lua.eval("string.rep('a', 1000)") # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
lupa.LuaMemoryError: not enough memory
``LuaMemoryError`` inherits from ``LuaError`` and ``MemoryError``.
Importing Lua binary modules
----------------------------
**This will usually work as is**, but here are the details, in case
anything goes wrong for you.
To use binary modules in Lua, you need to compile them against the
header files of the LuaJIT sources that you used to build Lupa, but do
not link them against the LuaJIT library.
Furthermore, CPython needs to enable global symbol visibility for
shared libraries before loading the Lupa module. This can be done by
calling ``sys.setdlopenflags(flag_values)``. Importing the ``lupa``
module will automatically try to set up the correct ``dlopen`` flags
if it can find the platform specific ``DLFCN`` Python module that
defines the necessary flag constants. In that case, using binary
modules in Lua should work out of the box.
If this setup fails, however, you have to set the flags manually.
When using the above configuration call, the argument ``flag_values``
must represent the sum of your system's values for ``RTLD_NEW`` and
``RTLD_GLOBAL``. If ``RTLD_NEW`` is 2 and ``RTLD_GLOBAL`` is 256, you
need to call ``sys.setdlopenflags(258)``.
Assuming that the Lua luaposix_ (``posix``) module is available, the
following should work on a Linux system:
.. code:: python
>>> import sys
>>> orig_dlflags = sys.getdlopenflags()
>>> sys.setdlopenflags(258)
>>> import lupa
>>> sys.setdlopenflags(orig_dlflags)
>>> lua = lupa.LuaRuntime()
>>> posix_module = lua.require('posix') # doctest: +SKIP
.. _luaposix: http://git.alpinelinux.org/cgit/luaposix
Building with different Lua versions
------------------------------------
The build is configured to automatically search for an installed version
of first LuaJIT and then Lua, and failing to find either, to use the bundled
LuaJIT or Lua version.
If you wish to build Lupa with a specific version of Lua, you can
configure the following options on setup:
.. list-table::
:widths: 20 35
:header-rows: 1
* - Option
- Description
* - ``--lua-lib <libfile>``
- Lua library file path, e.g. ``--lua-lib /usr/local/lib/lualib.a``
* - ``--lua-includes <incdir>``
- Lua include directory, e.g. ``--lua-includes /usr/local/include``
* - ``--use-bundle``
- Use bundled LuaJIT or Lua instead of searching for an installed version.
* - ``--no-bundle``
- Don't use the bundled LuaJIT/Lua, search for an installed version of LuaJIT or Lua,
e.g. using ``pkg-config``.
* - ``--no-lua-jit``
- Don't use or search for LuaJIT, only use or search Lua instead.
Installing lupa
===============
Building with LuaJIT2
---------------------
#) Download and unpack lupa
http://pypi.python.org/pypi/lupa
#) Download LuaJIT2
http://luajit.org/download.html
#) Unpack the archive into the lupa base directory, e.g.::
.../lupa-0.1/LuaJIT-2.0.2
#) Build LuaJIT::
cd LuaJIT-2.0.2
make
cd ..
If you need specific C compiler flags, pass them to ``make`` as follows::
make CFLAGS="..."
For trickier target platforms like Windows and MacOS-X, please see
the official `installation instructions for LuaJIT`_.
NOTE: When building on Windows, make sure that lua51.lib is made in addition
to lua51.dll. The MSVC build produces this file, MinGW does NOT.
#) Build lupa::
python setup.py build_ext -i
Or any other distutils target of your choice, such as ``build``
or one of the ``bdist`` targets. See the `distutils
documentation`_ for help, also the `hints on building extension
modules`_.
Note that on 64bit MacOS-X installations, the following additional
compiler flags are reportedly required due to the embedded LuaJIT::
-pagezero_size 10000 -image_base 100000000
You can find additional installation hints for MacOS-X in this
`somewhat unclear blog post`_, which may or may not tell you at
which point in the installation process to provide these flags.
Also, on 64bit MacOS-X, you will typically have to set the
environment variable ``ARCHFLAGS`` to make sure it only builds
for your system instead of trying to generate a fat binary with
both 32bit and 64bit support::
export ARCHFLAGS="-arch x86_64"
Note that this applies to both LuaJIT and Lupa, so make sure
you try a clean build of everything if you forgot to set it
initially.
.. _`installation instructions for LuaJIT`: http://luajit.org/install.html
.. _`somewhat unclear blog post`: http://t-p-j.blogspot.com/2010/11/lupa-on-os-x-with-macports-python-26.html
.. _`distutils documentation`: http://docs.python.org/install/index.html#install-index
.. _`hints on building extension modules`: http://docs.python.org/install/index.html#building-extensions-tips-and-tricks
Building with Lua 5.x
---------------------
It also works to use Lupa with the standard (non-JIT) Lua
runtime. The easiest way is to use the bundled lua submodule:
#) Clone the submodule::
$ git submodule update --init third-party/lua
#) Build Lupa::
$ python3 setup.py bdist_wheel --use-bundle --with-cython
You can also build it by installing a Lua 5.x package, including
any development packages (header files etc.). On systems that
use the "pkg-config" configuration mechanism, Lupa's
setup.py will pick up either LuaJIT2 or Lua automatically, with a
preference for LuaJIT2 if it is found. Pass the ``--no-luajit`` option
to the setup.py script if you have both installed but do not want to
use LuaJIT2.
On other systems, you may have to supply the build parameters
externally, e.g. using environment variables or by changing the
setup.py script manually. Pass the ``--no-luajit`` option to the
setup.py script in order to ignore the failure you get when neither
LuaJIT2 nor Lua are found automatically.
For further information, read this mailing list post:
https://www.freelists.org/post/lupa-dev/Lupa-with-normal-Lua-interpreter-Lua-51,2
Installing lupa from packages
=============================
Debian/Ubuntu + Lua 5.2
-----------------------
#) Install Lua 5.2 development package::
$ apt-get install liblua5.2-dev
#) Install lupa::
$ pip install lupa
Debian/Ubuntu + LuaJIT2
-----------------------
#) Install LuaJIT2 development package::
$ apt-get install libluajit-5.1-dev
#) Install lupa::
$ pip install lupa
Depending on OS version, you might get an older LuaJIT2 version.
OS X + Lua 5.2 + Homebrew
-------------------------
#) Install Lua::
$ brew install lua
#) Install pkg-config::
$ brew install pkg-config
#) Install lupa::
$ pip install lupa
Lupa change log
===============
2.4 (2025-01-10)
----------------
* The windows wheels now bundle LuaJIT 2.0 and 2.1.
(patch by Michal Plichta)
* Failures in the test suite didn't set a non-zero process exit value.
2.3 (2025-01-09)
----------------
* The bundled LuaJIT versions were updated to the latest git branches.
* The bundled Lua 5.4 was updated to 5.4.7.
* Removed support for Python 2.x.
* Built with Cython 3.0.11.
2.2 (2024-06-02)
----------------
* A new method ``LuaRuntime.gccollect()`` was added to trigger the Lua garbage collector.
* A new context manager ``LuaRuntime.nogc()`` was added to temporarily disable the Lua
garbage collector.
* Freeing Python objects from a thread while running Lua code could run into a deadlock.
* The bundled LuaJIT versions were updated to the latest git branches.
* Built with Cython 3.0.10.
2.1 (2024-03-24)
----------------
* GH#199: The ``table_from()`` method gained a new keyword argument ``recursive=False``.
If true, Python data structures will be recursively mapped to Lua tables,
taking care of loops and duplicates via identity de-duplication.
* GH#248: The LuaRuntime methods "eval", "execute" and "compile" gained new
keyword options ``mode`` and ``name`` that allow constraining the input type
and modifying the (chunk) name shown in error messages, following similar
arguments in the Lua ``load()`` function.
See https://www.lua.org/manual/5.4/manual.html#pdf-load
* GH#246: Loading Lua modules did not work for the version specific Lua modules
introduced in Lupa 2.0. It turned out that it can only be enabled for
one of them in a given Python run, so it is now left to users to enable it
explicitly at need.
(original patch by Richard Connon)
* GH#234: The bundled Lua 5.1 was updated to 5.1.5 and Lua 5.2 to 5.2.4.
(patch by xxyzz)
* The bundled Lua 5.4 was updated to 5.4.6.
* The bundled LuaJIT versions were updated to the latest git branches.
* Built with Cython 3.0.9 for improved support of Python 3.12/13.
2.0 (2023-04-03)
----------------
* GH#217: Lua stack traces in Python exception messages are now reversed to
match the order of Python stack traces.
* GH#196: Lupa now ships separate extension modules built with Lua 5.3,
Lua 5.4, LuaJIT 2.0 and LuaJIT 2.1 beta. Note that this is build specific
and may depend on the platform. A normal Python import cascade can be used.
* GH#211: A new option `max_memory` allows to limit the memory usage of Lua code.
(patch by Leo Developer)
* GH#171: Python references in Lua are now more safely reference counted
to prevent garbage collection glitches.
(patch by Guilherme Dantas)
* GH#146: Lua integers in Lua 5.3+ are converted from and to Python integers.
(patch by Guilherme Dantas)
* GH#180: The ``python.enumerate()`` function now returns indices as integers
if supported by Lua.
(patch by Guilherme Dantas)
* GH#178: The Lua integer limits can be read from the module as
``LUA_MAXINTEGER`` and ``LUA_MININTEGER``.
(patch by Guilherme Dantas)
* GH#174: Failures while calling the ``__index`` method in Lua during a
table index lookup from Python could crash Python.
(patch by Guilherme Dantas)
* GH#137: Passing ``None`` as a dict key into ``table_from()`` crashed.
(patch by Leo Developer)
* GH#176: A new function ``python.args(*args, **kwargs)`` was added
to help with building Python argument tuples and keyword argument dicts
for Python function calls from Lua code.
* GH#177: Tables that are not sequences raise ``IndexError`` when unpacking
them. Previously, non-sequential items were simply ignored.
* GH#179: Resolve some C compiler warnings about signed/unsigned comparisons.
(patch by Guilherme Dantas)
* Built with Cython 0.29.34.
1.14.1 (2022-11-16)
-------------------
* Rebuild with Cython 0.29.32 to support Python 3.11.
1.13 (2022-03-01)
-----------------
* Bundled Lua source files were missing in the source distribution.
1.12 (2022-02-24)
-----------------
* GH#197: Some binary wheels in the last releases were not correctly linked with Lua.
* GH#194: An absolute file path appeared in the ``SOURCES.txt`` metadata
of the source distribution.
1.11 (2022-02-23)
-----------------
* Use Lua 5.4.4 in binary wheels and as bundled Lua.
* Built with Cython 0.29.28 to support Python 3.10/11.
1.10 (2021-09-02)
-----------------
* GH#147: Lua 5.4 is supported.
(patch by Russel Davis)
* The runtime version of the Lua library as a tuple (e.g. ``(5,3)``)
is provided via ``lupa.LUA_VERSION`` and ``LuaRuntime.lua_version``.
* The Lua implementation name and version string is provided as
``LuaRuntime.lua_implementation``.
* ``setup.py`` accepts new command line arguments ``--lua-lib`` and ``--lua-includes``
to specify the
* Use Lua 5.4.3 in binary wheels and as bundled Lua.
* Built with Cython 0.29.24 to support Python 3.9.
1.9 (2019-12-21)
----------------
* Build against Lua 5.3 if available.
* Use Lua 5.3.5 in binary wheels and as bundled Lua.
* GH#129: Fix Lua module loading in Python 3.x.
* GH#126: Fix build on Linux systems that install Lua as "lua52" package.
* Built with Cython 0.29.14 for better Py3.8 compatibility.
1.8 (2019-02-01)
----------------
* GH#107: Fix a deprecated import in Py3.
* Built with Cython 0.29.3 for better Py3.7 compatibility.
1.7 (2018-08-06)
----------------
* GH#103: Provide wheels for MS Windows and fix MSVC build on Py2.7.
1.6 (2017-12-15)
----------------
* GH#95: Improved compatibility with Lua 5.3.
(patch by TitanSnow)
1.5 (2017-09-16)
----------------
* GH#93: New method ``LuaRuntime.compile()`` to compile Lua code
without executing it.
(patch by TitanSnow)
* GH#91: Lua 5.3 is bundled in the source distribution to simplify
one-shot installs.
(patch by TitanSnow)
* GH#87: Lua stack trace is included in output in debug mode.
(patch by aaiyer)
* GH#78: Allow Lua code to intercept Python exceptions.
(patch by Sergey Dobrov)
* Built with Cython 0.26.1.
1.4 (2016-12-10)
----------------
* GH#82: Lua coroutines were using the wrong runtime state
(patch by Sergey Dobrov)
* GH#81: copy locally provided Lua DLL into installed package on Windows
(patch by Gareth Coles)
* built with Cython 0.25.2
1.3 (2016-04-12)
----------------
* GH#70: ``eval()`` and ``execute()`` accept optional positional arguments
(patch by John Vandenberg)
* GH#65: calling ``str()`` on a Python object from Lua could fail if the
``LuaRuntime`` is set up without auto-encoding (patch by Mikhail Korobov)
* GH#63: attribute/keyword names were not properly encoded if the
``LuaRuntime`` is set up without auto-encoding (patch by Mikhail Korobov)
* built with Cython 0.24
1.2 (2015-10-10)
----------------
* callbacks returned from Lua coroutines were incorrectly mixing
coroutine state with global Lua state (patch by Mikhail Korobov)
* availability of ``python.builtins`` in Lua can be disabled via
``LuaRuntime`` option.
* built with Cython 0.23.4
1.1 (2014-11-21)
----------------
* new module function ``lupa.lua_type()`` that returns the Lua type of
a wrapped object as string, or ``None`` for normal Python objects
* new helper method ``LuaRuntime.table_from(...)`` that creates a Lua
table from one or more Python mappings and/or sequences
* new ``lupa.unpacks_lua_table`` and ``lupa.unpacks_lua_table_method``
decorators to allow calling Python functions from Lua using named
arguments
* fix a hang on shutdown where the LuaRuntime failed to deallocate due
to reference cycles
* Lupa now plays more nicely with other Lua extensions that create
userdata objects
1.0.1 (2014-10-11)
------------------
* fix a crash when requesting attributes of wrapped Lua coroutine objects
* looking up attributes on Lua objects that do not support it now always
raises an AttributeError instead of sometimes raising a TypeError depending
on the attribute name
1.0 (2014-09-28)
----------------
* NOTE: this release includes the major backwards incompatible changes listed
below. It is believed that they simplify the interaction between Python code
and Lua code by more strongly following idiomatic Lua on the Lua side.
* Instead of passing a wrapped ``python.none`` object into Lua, ``None``
return values are now mapped to ``nil``, making them more straight forward
to handle in Lua code. This makes the behaviour more consistent, as it
was previously somewhat arbitrary where ``none`` could appear and where a
``nil`` value was used. The only remaining exception is during iteration,
where the first returned value must not be ``nil`` in Lua, or otherwise
the loop terminates prematurely. To prevent this, any ``None`` value
that the iterator returns, or any first item in exploded tuples that is
``None``, is still mapped to ``python.none``. Any further values
returned in the same iteration will be mapped to ``nil`` if they are
``None``, not to ``none``. This means that only the first argument
needs to be manually checked for this special case. For the
``enumerate()`` iterator, the counter is never ``None`` and thus the
following unpacked items will never be mapped to ``python.none``.
* When ``unpack_returned_tuples=True``, iteration now also unpacks tuple
values, including ``enumerate()`` iteration, which yields a flat sequence
of counter and unpacked values.
* When calling bound Python methods from Lua as "obj:meth()", Lupa now
prevents Python from prepending the self argument a second time, so that
the Python method is now called as "obj.meth()". Previously, it was called
as "obj.meth(obj)". Note that this can be undesired when the object itself
is explicitly passed as first argument from Lua, e.g. when calling
"func(obj)" where "func" is "obj.meth", but these constellations should be
rare. As a work-around for this case, user code can wrap the bound method
in another function so that the final call comes from Python.
* garbage collection works for reference cycles that span both runtimes,
Python and Lua
* calling from Python into Lua and back into Python did not clean up the
Lua call arguments before the innermost call, so that they could leak
into the nested Python call or its return arguments
* support for Lua 5.2 (in addition to Lua 5.1 and LuaJIT 2.0)
* Lua tables support Python's "del" statement for item deletion
(patch by Jason Fried)
* Attribute lookup can use a more fine-grained control mechanism by
implementing explicit getter and setter functions for a LuaRuntime
(``attribute_handlers`` argument). Patch by Brian Moe.
* item assignments/lookups on Lua objects from Python no longer
special case double underscore names (as opposed to attribute lookups)
0.21 (2014-02-12)
-----------------
* some garbage collection issues were cleaned up using new Cython features
* new ``LuaRuntime`` option ``unpack_returned_tuples`` which automatically
unpacks tuples returned from Python functions into separate Lua objects
(instead of returning a single Python tuple object)
* some internal wrapper classes were removed from the module API
* Windows build fixes
* Py3.x build fixes
* support for building with Lua 5.1 instead of LuaJIT (setup.py --no-luajit)
* no longer uses Cython by default when building from released sources (pass
``--with-cython`` to explicitly request a rebuild)
* requires Cython 0.20+ when building from unreleased sources
* built with Cython 0.20.1
0.20 (2011-05-22)
-----------------
* fix "deallocating None" crash while iterating over Lua tables in
Python code
* support for filtering attribute access to Python objects for Lua
code
* fix: setting source encoding for Lua code was broken
0.19 (2011-03-06)
-----------------
* fix serious resource leak when creating multiple LuaRuntime instances
* portability fix for binary module importing
0.18 (2010-11-06)
-----------------
* fix iteration by returning ``Py_None`` object for ``None`` instead
of ``nil``, which would terminate the iteration
* when converting Python values to Lua, represent ``None`` as a
``Py_None`` object in places where ``nil`` has a special meaning,
but leave it as ``nil`` where it doesn't hurt
* support for counter start value in ``python.enumerate()``
* native implementation for ``python.enumerate()`` that is several
times faster
* much faster Lua iteration over Python objects
0.17 (2010-11-05)
-----------------
* new helper function ``python.enumerate()`` in Lua that returns a Lua
iterator for a Python object and adds the 0-based index to each
item.
* new helper function ``python.iterex()`` in Lua that returns a Lua
iterator for a Python object and unpacks any tuples that the
iterator yields.
* new helper function ``python.iter()`` in Lua that returns a Lua
iterator for a Python object.
* reestablished the ``python.as_function()`` helper function for Lua
code as it can be needed in cases where Lua cannot determine how to
run a Python function.
0.16 (2010-09-03)
-----------------
* dropped ``python.as_function()`` helper function for Lua as all
Python objects are callable from Lua now (potentially raising a
``TypeError`` at call time if they are not callable)
* fix regression in 0.13 and later where ordinary Lua functions failed
to print due to an accidentally used meta table
* fix crash when calling ``str()`` on wrapped Lua objects without
metatable
0.15 (2010-09-02)
-----------------
* support for loading binary Lua modules on systems that support it
0.14 (2010-08-31)
-----------------
* relicensed to the MIT license used by LuaJIT2 to simplify licensing
considerations
0.13.1 (2010-08-30)
-------------------
* fix Cython generated C file using Cython 0.13
0.13 (2010-08-29)
-----------------
* fixed undefined behaviour on ``str(lua_object)`` when the object's
``__tostring()`` meta method fails
* removed redundant "error:" prefix from ``LuaError`` messages
* access to Python's ``python.builtins`` from Lua code
* more generic wrapping rules for Python objects based on supported
protocols (callable, getitem, getattr)
* new helper functions ``as_attrgetter()`` and ``as_itemgetter()`` to
specify the Python object protocol used by Lua indexing when
wrapping Python objects in Python code
* new helper functions ``python.as_attrgetter()``,
``python.as_itemgetter()`` and ``python.as_function()`` to specify
the Python object protocol used by Lua indexing of Python objects in
Lua code
* item and attribute access for Python objects from Lua code
0.12 (2010-08-16)
-----------------
* fix Lua stack leak during table iteration
* fix lost Lua object reference after iteration
0.11 (2010-08-07)
-----------------
* error reporting on Lua syntax errors failed to clean up the stack so
that errors could leak into the next Lua run
* Lua error messages were not properly decoded
0.10 (2010-07-27)
-----------------
* much faster locking of the LuaRuntime, especially in the single
threaded case (see
http://code.activestate.com/recipes/577336-fast-re-entrant-optimistic-lock-implemented-in-cyt/)
* fixed several error handling problems when executing Python code
inside of Lua
0.9 (2010-07-23)
----------------
* fixed Python special double-underscore method access on LuaObject
instances
* Lua coroutine support through dedicated wrapper classes, including
Python iteration support. In Python space, Lua coroutines behave
exactly like Python generators.
0.8 (2010-07-21)
----------------
* support for returning multiple values from Lua evaluation
* ``repr()`` support for Lua objects
* ``LuaRuntime.table()`` method for creating Lua tables from Python
space
* encoding fix for ``str(LuaObject)``
0.7 (2010-07-18)
----------------
* ``LuaRuntime.require()`` and ``LuaRuntime.globals()`` methods
* renamed ``LuaRuntime.run()`` to ``LuaRuntime.execute()``
* support for ``len()``, ``setattr()`` and subscripting of Lua objects
* provide all built-in Lua libraries in ``LuaRuntime``, including
support for library loading
* fixed a thread locking issue
* fix passing Lua objects back into the runtime from Python space
0.6 (2010-07-18)
----------------
* Python iteration support for Lua objects (e.g. tables)
* threading fixes
* fix compile warnings
0.5 (2010-07-14)
----------------
* explicit encoding options per LuaRuntime instance to decode/encode
strings and Lua code
0.4 (2010-07-14)
----------------
* attribute read access on Lua objects, e.g. to read Lua table values
from Python
* str() on Lua objects
* include .hg repository in source downloads
* added missing files to source distribution
0.3 (2010-07-13)
----------------
* fix several threading issues
* safely free the GIL when calling into Lua
0.2 (2010-07-13)
----------------
* propagate Python exceptions through Lua calls
0.1 (2010-07-12)
----------------
* first public release
License
=======
Lupa
----
Copyright (c) 2010-2017 Stefan Behnel. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Lua
---
(See https://www.lua.org/license.html)
Copyright © 1994–2017 Lua.org, PUC-Rio.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
|