1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
"""
Thread safety tests for free-threaded Python (PEP 703).
These tests validate that the mapbox_earcut library is safe to use
with multiple threads when running Python with the GIL disabled.
"""
import sys
from concurrent.futures import ThreadPoolExecutor
import threading
from typing import Any, Callable, List, Optional, Tuple, Union
import mapbox_earcut as earcut
import numpy as np
from numpy.typing import NDArray
import pytest
def run_threaded(
func: Callable[..., Any],
num_threads: int = 8,
pass_count: bool = False,
pass_barrier: bool = False,
outer_iterations: int = 1,
prepare_args: Optional[Callable[[], List[Any]]] = None,
) -> None:
"""
Runs a function many times in parallel.
This helper is adapted from NumPy's testing utilities and is designed
to expose race conditions and thread safety issues.
Args:
func: The function to run in parallel
num_threads: Number of threads to spawn
pass_count: If True, pass thread index as first argument to func
pass_barrier: If True, pass a threading.Barrier as argument to func
outer_iterations: Number of times to repeat the entire test
prepare_args: Optional function that returns a list of arguments
"""
for _ in range(outer_iterations):
with ThreadPoolExecutor(max_workers=num_threads) as tpe:
if prepare_args is None:
args = []
else:
args = prepare_args()
if pass_barrier:
barrier = threading.Barrier(num_threads)
args.append(barrier)
else:
barrier = None
if pass_count:
all_args = [(func, i, *args) for i in range(num_threads)]
else:
all_args = [(func, *args) for i in range(num_threads)]
futures = []
try:
for arg in all_args:
futures.append(tpe.submit(*arg))
finally:
if len(futures) < num_threads and barrier is not None:
barrier.abort()
for f in futures:
f.result()
# Basic thread safety tests
def test_parallel_triangulate_float32_simple() -> None:
"""Test that multiple threads can triangulate simple polygons simultaneously."""
results: List[Optional[NDArray[np.uint32]]] = [None] * 8
def closure(i: int, b: threading.Barrier) -> None:
# Create per-thread data to avoid sharing arrays
verts = np.array([[0, 0], [1, 0], [1, 1]], dtype=np.float32).reshape(-1, 2)
rings = np.array([3])
# Synchronize all threads to maximize chance of race condition
_ = b.wait()
# Perform triangulation
result = earcut.triangulate_float32(verts, rings)
# Store result
results[i] = result
run_threaded(closure, num_threads=8, pass_barrier=True, pass_count=True)
# Verify all threads got correct results
expected = np.array([1, 2, 0])
for i, result in enumerate(results):
assert result is not None, f"Thread {i} didn't produce a result"
assert result.dtype == np.uint32
assert result.shape == (3,)
assert np.array_equal(result, expected), f"Thread {i} got incorrect result"
def test_parallel_triangulate_float64_simple() -> None:
"""Test that multiple threads can triangulate with float64 simultaneously."""
results: List[Optional[NDArray[np.uint32]]] = [None] * 8
def closure(i: int, b: threading.Barrier) -> None:
verts = np.array([[0, 0], [1, 0], [1, 1]], dtype=np.float64).reshape(-1, 2)
rings = np.array([3])
_ = b.wait()
result = earcut.triangulate_float64(verts, rings)
results[i] = result
run_threaded(closure, num_threads=8, pass_barrier=True, pass_count=True)
expected = np.array([1, 2, 0])
for result in results:
assert result is not None
assert np.array_equal(result, expected)
def test_parallel_triangulate_int32_simple() -> None:
"""Test that multiple threads can triangulate with int32 simultaneously."""
results: List[Optional[NDArray[np.uint32]]] = [None] * 8
def closure(i: int, b: threading.Barrier) -> None:
verts = np.array([[0, 0], [1, 0], [1, 1]], dtype=np.int32).reshape(-1, 2)
rings = np.array([3])
_ = b.wait()
result = earcut.triangulate_int32(verts, rings)
results[i] = result
run_threaded(closure, num_threads=8, pass_barrier=True, pass_count=True)
expected = np.array([1, 2, 0])
for result in results:
assert result is not None
assert np.array_equal(result, expected)
def test_parallel_triangulate_int64_simple() -> None:
"""Test that multiple threads can triangulate with int64 simultaneously."""
results: List[Optional[NDArray[np.uint32]]] = [None] * 8
def closure(i: int, b: threading.Barrier) -> None:
verts = np.array([[0, 0], [1, 0], [1, 1]], dtype=np.int64).reshape(-1, 2)
rings = np.array([3])
_ = b.wait()
result = earcut.triangulate_int64(verts, rings)
results[i] = result
run_threaded(closure, num_threads=8, pass_barrier=True, pass_count=True)
expected = np.array([1, 2, 0])
for result in results:
assert result is not None
assert np.array_equal(result, expected)
# Complex polygon thread safety tests
def test_parallel_triangulate_square() -> None:
"""Test parallel triangulation of a square."""
results: List[Optional[NDArray[np.uint32]]] = [None] * 16
def closure(i: int, b: threading.Barrier) -> None:
# Square polygon
verts = np.array(
[[0, 0], [10, 0], [10, 10], [0, 10]], dtype=np.float32
).reshape(-1, 2)
rings = np.array([4])
_ = b.wait()
result = earcut.triangulate_float32(verts, rings)
results[i] = result
run_threaded(
closure, num_threads=16, pass_barrier=True, pass_count=True, outer_iterations=3
)
# All results should have 6 indices (2 triangles)
for result in results:
assert result is not None
assert result.dtype == np.uint32
assert result.shape == (6,)
def test_parallel_triangulate_with_hole() -> None:
"""Test parallel triangulation of a polygon with a hole."""
results: List[Optional[NDArray[np.uint32]]] = [None] * 8
def closure(i: int, b: threading.Barrier) -> None:
# Outer square
outer = np.array([[0, 0], [10, 0], [10, 10], [0, 10]], dtype=np.float32)
# Inner square (hole)
inner = np.array([[2, 2], [8, 2], [8, 8], [2, 8]], dtype=np.float32)
verts = np.vstack([outer, inner]).reshape(-1, 2)
rings = np.array([4, 8]) # First ring ends at 4, second at 8
_ = b.wait()
result = earcut.triangulate_float32(verts, rings)
results[i] = result
run_threaded(closure, num_threads=8, pass_barrier=True, pass_count=True)
# All results should be consistent
first_result = results[0]
assert first_result is not None
for result in results[1:]:
assert result is not None
assert result.shape == first_result.shape
assert np.array_equal(result, first_result)
def test_parallel_triangulate_complex_shape() -> None:
"""Test parallel triangulation with a more complex polygon."""
results: List[Optional[NDArray[np.uint32]]] = [None] * 12
def closure(i: int, b: threading.Barrier) -> None:
# Hexagon
angles = np.linspace(0, 2 * np.pi, 7)[:-1] # 6 points
verts = np.column_stack([np.cos(angles), np.sin(angles)]).astype(np.float64)
rings = np.array([6])
_ = b.wait()
result = earcut.triangulate_float64(verts, rings)
results[i] = result
run_threaded(
closure, num_threads=12, pass_barrier=True, pass_count=True, outer_iterations=2
)
# Hexagon should produce 12 indices (4 triangles)
for result in results:
assert result is not None
assert result.shape == (12,)
# Stress tests
def test_high_contention_same_shape() -> None:
"""
Stress test with many threads processing the same shape.
This test runs many threads all triangulating the same geometry
to maximize the chance of exposing race conditions.
"""
num_threads = 32
results: List[Optional[NDArray[np.uint32]]] = [None] * num_threads
def closure(i: int, b: threading.Barrier) -> None:
verts = np.array([[0, 0], [5, 0], [5, 5], [0, 5]], dtype=np.float32).reshape(
-1, 2
)
rings = np.array([4])
_ = b.wait()
result = None
# Run multiple times in each thread
for _ in range(10):
result = earcut.triangulate_float32(verts, rings)
results[i] = result
run_threaded(
closure,
num_threads=num_threads,
pass_barrier=True,
pass_count=True,
outer_iterations=5,
)
# Verify all results are consistent
for result in results:
assert result is not None
assert result.shape == (6,)
def test_mixed_operations() -> None:
"""Test mixing different data types in parallel."""
results: List[Optional[NDArray[np.uint32]]] = [None] * 16
def closure(i: int, b: threading.Barrier) -> None:
# Each thread uses a different dtype based on its index
dtypes = [np.float32, np.float64, np.int32, np.int64]
funcs: List[Callable[[Any, Any], NDArray[np.uint32]]] = [
earcut.triangulate_float32,
earcut.triangulate_float64,
earcut.triangulate_int32,
earcut.triangulate_int64,
]
dtype = dtypes[i % 4]
func = funcs[i % 4]
verts = np.array([[0, 0], [1, 0], [1, 1]], dtype=dtype).reshape(-1, 2)
rings = np.array([3])
_ = b.wait()
result = func(verts, rings)
results[i] = result
run_threaded(
closure, num_threads=16, pass_barrier=True, pass_count=True, outer_iterations=10
)
expected = np.array([1, 2, 0])
for result in results:
assert result is not None
assert np.array_equal(result, expected)
def test_varying_sizes() -> None:
"""Test with varying polygon sizes across threads."""
results: List[Optional[NDArray[np.uint32]]] = [None] * 20
def closure(i: int, b: threading.Barrier) -> None:
# Create polygons of different sizes based on thread index
num_sides = 3 + (i % 8) # 3 to 10 sides
angles = np.linspace(0, 2 * np.pi, num_sides + 1)[:-1]
verts = np.column_stack([np.cos(angles), np.sin(angles)]).astype(np.float32)
rings = np.array([num_sides])
_ = b.wait()
result = earcut.triangulate_float32(verts, rings)
results[i] = result
run_threaded(
closure, num_threads=20, pass_barrier=True, pass_count=True, outer_iterations=3
)
# Verify results exist and have reasonable sizes
for i, result in enumerate(results):
assert result is not None
num_sides = 3 + (i % 8)
# n-sided polygon should produce (n-2) triangles = (n-2)*3 indices
expected_indices = (num_sides - 2) * 3
assert result.shape == (expected_indices,), (
f"Thread {i}: {num_sides}-sided polygon should produce {expected_indices} indices"
)
# Error handling thread safety tests
def test_parallel_invalid_rings() -> None:
"""Test that multiple threads can handle invalid input simultaneously."""
exceptions: List[Optional[ValueError]] = [None] * 8
def closure(i: int, b: threading.Barrier) -> None:
verts = np.array([[0, 0], [1, 0], [1, 1]], dtype=np.float32).reshape(-1, 2)
rings = np.array([5]) # Invalid: larger than verts
_ = b.wait()
try:
_ = earcut.triangulate_float32(verts, rings)
exceptions[i] = None
except ValueError as e:
exceptions[i] = e
run_threaded(closure, num_threads=8, pass_barrier=True, pass_count=True)
# All threads should have raised ValueError
for i, exc in enumerate(exceptions):
assert exc is not None, f"Thread {i} should have raised ValueError"
assert isinstance(exc, ValueError)
def test_parallel_mixed_valid_invalid() -> None:
"""Test mixing valid and invalid inputs across threads."""
results: List[Optional[Tuple[str, Union[NDArray[np.uint32], ValueError]]]] = [
None
] * 16
def closure(i: int, b: threading.Barrier) -> None:
verts = np.array([[0, 0], [1, 0], [1, 1]], dtype=np.float32).reshape(-1, 2)
# Even threads: valid input, Odd threads: invalid input
if i % 2 == 0:
rings = np.array([3])
else:
rings = np.array([5]) # Invalid
_ = b.wait()
try:
result = earcut.triangulate_float32(verts, rings)
results[i] = ("success", result)
except ValueError as e:
results[i] = ("error", e)
run_threaded(
closure, num_threads=16, pass_barrier=True, pass_count=True, outer_iterations=5
)
# Verify results match expectations
for i, result in enumerate(results):
assert result is not None
status, value = result
if i % 2 == 0:
assert status == "success", f"Thread {i} should have succeeded"
assert isinstance(value, np.ndarray)
assert value.shape == (3,)
else:
assert status == "error", f"Thread {i} should have raised error"
assert isinstance(value, ValueError)
# Helper functions
def is_free_threaded() -> bool:
"""Check if Python is running with free-threading enabled."""
return getattr(sys, "_is_gil_enabled", lambda: True)() is False
pytestmark = pytest.mark.skipif(
not is_free_threaded(),
reason="Thread safety tests are most relevant for free-threaded Python",
)
|