File: README.md

package info (click to toggle)
python-marshmallow-dataclass 8.7.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 332 kB
  • sloc: python: 2,351; makefile: 11; sh: 6
file content (342 lines) | stat: -rw-r--r-- 10,562 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# marshmallow-dataclass

[![Test Workflow Status (master branch)](https://img.shields.io/github/actions/workflow/status/lovasoa/marshmallow_dataclass/python-package.yml?branch=master&label=tests)](https://github.com/lovasoa/marshmallow_dataclass/actions/workflows/python-package.yml)
[![PyPI version](https://badge.fury.io/py/marshmallow-dataclass.svg)](https://badge.fury.io/py/marshmallow-dataclass)
[![marshmallow 3 compatible](https://badgen.net/badge/marshmallow/3)](https://marshmallow.readthedocs.io/en/latest/upgrading.html)
[![download stats](https://img.shields.io/pypi/dm/marshmallow-dataclass.svg)](https://pypistats.org/packages/marshmallow-dataclass)

Automatic generation of [marshmallow](https://marshmallow.readthedocs.io/) schemas from dataclasses.

```python
from dataclasses import dataclass, field
from typing import List, Optional

import marshmallow_dataclass
import marshmallow.validate


@dataclass
class Building:
    # field metadata is used to instantiate the marshmallow field
    height: float = field(metadata={"validate": marshmallow.validate.Range(min=0)})
    name: str = field(default="anonymous")


@dataclass
class City:
    name: Optional[str]
    buildings: List[Building] = field(default_factory=list)


city_schema = marshmallow_dataclass.class_schema(City)()

city = city_schema.load(
    {"name": "Paris", "buildings": [{"name": "Eiffel Tower", "height": 324}]}
)
# => City(name='Paris', buildings=[Building(height=324.0, name='Eiffel Tower')])

city_dict = city_schema.dump(city)
# => {'name': 'Paris', 'buildings': [{'name': 'Eiffel Tower', 'height': 324.0}]}
```

## Why

Using schemas in Python often means having both a class to represent your data and a class to represent its schema, which results in duplicated code that could fall out of sync.
As of Python 3.6, types can be defined for class members, which allows libraries to generate schemas automatically.

Therefore, you can document your APIs in a way that allows you to statically check that the code matches the documentation.

## Installation

This package [is hosted on PyPI](https://pypi.org/project/marshmallow-dataclass/).

```shell
pip3 install marshmallow-dataclass
```

```shell
pip3 install "marshmallow-dataclass"
```

### marshmallow 2 support

`marshmallow-dataclass` no longer supports marshmallow 2.
Install `marshmallow_dataclass<6.0` if you need marshmallow 2 compatibility.

## Usage

Use the [`class_schema`](https://lovasoa.github.io/marshmallow_dataclass/html/marshmallow_dataclass.html#marshmallow_dataclass.class_schema)
function to generate a marshmallow [Schema](https://marshmallow.readthedocs.io/en/latest/api_reference.html#marshmallow.Schema)
class from a [`dataclass`](https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass).

```python
from dataclasses import dataclass
from datetime import date

import marshmallow_dataclass


@dataclass
class Person:
    name: str
    birth: date


PersonSchema = marshmallow_dataclass.class_schema(Person)
```

The type of your fields must be either basic 
[types supported by marshmallow](https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema.TYPE_MAPPING)
(such as `float`, `str`, `bytes`, `datetime`, ...), `Union`, or other dataclasses.

### Union (de)serialization coercion 

Typically the Union type; `Union[X, Y]` means—from a set theory perspective—either `X` or `Y`, i.e., an unordered set, howevever the order of the sub-types defines the precedence when attempting to ether deserialize or serialize the value per [here](https://github.com/lovasoa/marshmallow_dataclass/blob/master/marshmallow_dataclass/union_field.py). 

For example, 

```python
from typing import Union

from dataclasses import dataclass


@dataclass
class Person:
    name: str
    age: Union[int, float]


PersonSchema = marshmallow_dataclass.class_schema(Person)
PersonSchema().load({"name": "jane", "age": 50.0})
# => Person(name="jane", age=50)
```

will first (sucessfully) try to coerce `50.0` to an `int`. If coercion is not desired the `Any` type can be used with the caveat that values will not be type checked without additional [validation](https://marshmallow.readthedocs.io/en/stable/marshmallow.validate.html).

### Customizing generated fields

To pass arguments to the generated marshmallow fields (e.g., `validate`, `load_only`, `dump_only`, etc.),
pass them to the `metadata` argument of the
[`field`](https://docs.python.org/3/library/dataclasses.html#dataclasses.field) function.

Note that starting with version 4, marshmallow will disallow passing arbitrary arguments, so any
additional metadata should itself be put in its own `metadata` dict:

```python
from dataclasses import dataclass, field
import marshmallow_dataclass
import marshmallow.validate


@dataclass
class Person:
    name: str = field(
        metadata=dict(
            load_only=True, metadata=dict(description="The person's first name")
        )
    )
    height: float = field(metadata=dict(validate=marshmallow.validate.Range(min=0)))


PersonSchema = marshmallow_dataclass.class_schema(Person)
```

### `@dataclass` shortcut

`marshmallow_dataclass` provides a `@dataclass` decorator that behaves like the standard library's 
`@dataclasses.dataclass` and adds a `Schema` attribute with the generated marshmallow
[Schema](https://marshmallow.readthedocs.io/en/2.x-line/api_reference.html#marshmallow.Schema).

```python
# Use marshmallow_dataclass's @dataclass shortcut
from marshmallow_dataclass import dataclass


@dataclass
class Point:
    x: float
    y: float


Point.Schema().dump(Point(4, 2))
# => {'x': 4, 'y': 2}
```

Note: Since the `.Schema` property is added dynamically, it can confuse type checkers.
To avoid that, you can declare `Schema` as a [`ClassVar`](https://docs.python.org/3/library/typing.html#typing.ClassVar).

```python
from typing import ClassVar, Type

from marshmallow_dataclass import dataclass
from marshmallow import Schema


@dataclass
class Point:
    x: float
    y: float
    Schema: ClassVar[Type[Schema]] = Schema
```

### Customizing the base Schema

It is also possible to derive all schemas from your own 
base Schema class
(see [marshmallow's documentation about extending `Schema`](https://marshmallow.readthedocs.io/en/stable/extending.html)).
This allows you to implement custom (de)serialization
behavior, for instance specifying a custom mapping between your classes and marshmallow fields,
or renaming fields on serialization.

#### Custom mapping between classes and fields

```python
class BaseSchema(marshmallow.Schema):
    TYPE_MAPPING = {CustomType: CustomField, List: CustomListField}


class Sample:
    my_custom: CustomType
    my_custom_list: List[int]


SampleSchema = marshmallow_dataclass.class_schema(Sample, base_schema=BaseSchema)
# SampleSchema now serializes my_custom using the CustomField marshmallow field
# and serializes my_custom_list using the CustomListField marshmallow field
```

#### Renaming fields on serialization

```python
import marshmallow
import marshmallow_dataclass


class UppercaseSchema(marshmallow.Schema):
    """A Schema that marshals data with uppercased keys."""

    def on_bind_field(self, field_name, field_obj):
        field_obj.data_key = (field_obj.data_key or field_name).upper()


class Sample:
    my_text: str
    my_int: int


SampleSchema = marshmallow_dataclass.class_schema(Sample, base_schema=UppercaseSchema)

SampleSchema().dump(Sample(my_text="warm words", my_int=1))
# -> {"MY_TEXT": "warm words", "MY_INT": 1}
```

You can also pass `base_schema` to `marshmallow_dataclass.dataclass`.

```python
@marshmallow_dataclass.dataclass(base_schema=UppercaseSchema)
class Sample:
    my_text: str
    my_int: int
```

See [marshmallow's documentation about extending `Schema`](https://marshmallow.readthedocs.io/en/stable/extending.html).

### Custom type aliases

This library allows you to specify [customized marshmallow fields](https://marshmallow.readthedocs.io/en/stable/custom_fields.html#creating-a-field-class) using python's Annoted type [PEP-593](https://peps.python.org/pep-0593/).

```python
from typing import Annotated
import marshmallow.fields as mf
import marshmallow.validate as mv

IPv4 = Annotated[str, mf.String(validate=mv.Regexp(r"^([0-9]{1,3}\\.){3}[0-9]{1,3}$"))]
```

You can also pass a marshmallow field class.

```python
from typing import Annotated
import marshmallow
from marshmallow_dataclass import NewType

Email = Annotated[str, marshmallow.fields.Email]
```

For convenience, some custom types are provided:

```python
from marshmallow_dataclass.typing import Email, Url
```

When using Python 3.8, you must import `Annotated` from the typing_extensions package

```python
# Version agnostic import code:
if sys.version_info >= (3, 9):
    from typing import Annotated
else:
    from typing_extensions import Annotated
```

### Custom NewType declarations [__deprecated__]

> NewType is deprecated in favor or type aliases using Annotated, as described above.

This library exports a `NewType` function to create types that generate [customized marshmallow fields](https://marshmallow.readthedocs.io/en/stable/custom_fields.html#creating-a-field-class).

Keyword arguments to `NewType` are passed to the marshmallow field constructor.

```python
import marshmallow.validate
from marshmallow_dataclass import NewType

IPv4 = NewType(
    "IPv4", str, validate=marshmallow.validate.Regexp(r"^([0-9]{1,3}\\.){3}[0-9]{1,3}$")
)
```

You can also pass a marshmallow field to `NewType`.

```python
import marshmallow
from marshmallow_dataclass import NewType

Email = NewType("Email", str, field=marshmallow.fields.Email)
```

Note: if you are using `mypy`, you will notice that `mypy` throws an error if a variable defined with
`NewType` is used in a type annotation. To resolve this, add the `marshmallow_dataclass.mypy` plugin
to your `mypy` configuration, e.g.:

```ini
[mypy]
plugins = marshmallow_dataclass.mypy
# ...
```

### `Meta` options

[`Meta` options](https://marshmallow.readthedocs.io/en/stable/api_reference.html#marshmallow.Schema.Meta) are set the same way as a marshmallow `Schema`.

```python
from marshmallow_dataclass import dataclass


@dataclass
class Point:
    x: float
    y: float

    class Meta:
        ordered = True
```

## Documentation

The project documentation is hosted on GitHub Pages: https://lovasoa.github.io/marshmallow_dataclass/

## Contributing

To install this project and make changes to it locally, follow the instructions in [`CONTRIBUTING.md`](./CONTRIBUTING.md).