File: quickstart.rst

package info (click to toggle)
python-marshmallow 3.26.1-0.2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,280 kB
  • sloc: python: 11,513; makefile: 11; sh: 8
file content (591 lines) | stat: -rw-r--r-- 19,128 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
Quickstart
==========

This guide will walk you through the basics of creating schemas for serializing and deserializing data.

Declaring schemas
-----------------

Let's start with a basic user "model".

.. code-block:: python

    from dataclasses import dataclass, field
    import datetime as dt


    @dataclass
    class User:
        name: str
        email: str
        created_at: dt.datetime = field(default_factory=dt.datetime.now)

Create a schema by defining a class with variables mapping attribute names to :class:`Field <fields.Field>` objects.

.. code-block:: python

    from marshmallow import Schema, fields


    class UserSchema(Schema):
        name = fields.Str()
        email = fields.Email()
        created_at = fields.DateTime()

.. seealso::

    For a full reference on the available field classes, see the `fields module documentation <marshmallow.fields>`.

.. admonition:: Creating schemas from dictionaries

    You can also create a schema from a dictionary of fields using the `from_dict <marshmallow.Schema.from_dict>` method.

    .. code-block:: python

        from marshmallow import Schema, fields

        UserSchema = Schema.from_dict(
            {
                "name": fields.Str(),
                "email": fields.Email(),
                "created_at": fields.DateTime(),
            }
        )

    `from_dict <marshmallow.Schema.from_dict>` is especially useful for generating schemas at runtime.

Serializing objects ("dumping")
-------------------------------

Serialize objects by passing them to your schema's :meth:`dump <marshmallow.Schema.dump>` method, which returns the formatted result.

.. code-block:: python

    from pprint import pprint

    user = User(name="Monty", email="monty@python.org")
    schema = UserSchema()
    result = schema.dump(user)
    pprint(result)
    # {"name": "Monty",
    #  "email": "monty@python.org",
    #  "created_at": "2014-08-17T14:54:16.049594+00:00"}

You can also serialize to a JSON-encoded string using :meth:`dumps <marshmallow.Schema.dumps>`.

.. code-block:: python

    json_result = schema.dumps(user)
    print(json_result)
    # '{"name": "Monty", "email": "monty@python.org", "created_at": "2014-08-17T14:54:16.049594+00:00"}'

Filtering output
----------------

You may not need to output all declared fields every time you use a schema. You can specify which fields to output with the ``only`` parameter.

.. code-block:: python

    summary_schema = UserSchema(only=("name", "email"))
    summary_schema.dump(user)
    # {"name": "Monty", "email": "monty@python.org"}

You can also exclude fields by passing in the ``exclude`` parameter.


Deserializing objects ("loading")
---------------------------------

The reverse of the `dump <Schema.dump>` method is `load <Schema.load>`, which validates and deserializes
an input dictionary to an application-level data structure.

By default, :meth:`load <Schema.load>` will return a dictionary of field names mapped to deserialized values (or raise a :exc:`ValidationError <marshmallow.exceptions.ValidationError>`
with a dictionary of validation errors, which we'll :ref:`revisit later <validation>`).

.. code-block:: python

    from pprint import pprint

    user_data = {
        "created_at": "2014-08-11T05:26:03.869245",
        "email": "ken@yahoo.com",
        "name": "Ken",
    }
    schema = UserSchema()
    result = schema.load(user_data)
    pprint(result)
    # {'name': 'Ken',
    #  'email': 'ken@yahoo.com',
    #  'created_at': datetime.datetime(2014, 8, 11, 5, 26, 3, 869245)},

Notice that the datetime string was converted to a `datetime` object.

Deserializing to objects
++++++++++++++++++++++++

In order to deserialize to an object, define a method of your :class:`Schema` and decorate it with `post_load <marshmallow.decorators.post_load>`. The method receives a dictionary of deserialized data.

.. code-block:: python

    from marshmallow import Schema, fields, post_load


    class UserSchema(Schema):
        name = fields.Str()
        email = fields.Email()
        created_at = fields.DateTime()

        @post_load
        def make_user(self, data, **kwargs):
            return User(**data)

Now, the `load <Schema.load>` method return a ``User`` instance.

.. code-block:: python

    user_data = {"name": "Ronnie", "email": "ronnie@stones.com"}
    schema = UserSchema()
    result = schema.load(user_data)
    print(result)  # => <User(name='Ronnie')>

Handling collections of objects
-------------------------------

Set ``many=True`` when dealing with iterable collections of objects.

.. code-block:: python

    user1 = User(name="Mick", email="mick@stones.com")
    user2 = User(name="Keith", email="keith@stones.com")
    users = [user1, user2]
    schema = UserSchema(many=True)
    result = schema.dump(users)  # OR UserSchema().dump(users, many=True)
    pprint(result)
    # [{'name': u'Mick',
    #   'email': u'mick@stones.com',
    #   'created_at': '2014-08-17T14:58:57.600623+00:00'}
    #  {'name': u'Keith',
    #   'email': u'keith@stones.com',
    #   'created_at': '2014-08-17T14:58:57.600623+00:00'}]


.. _validation:

Validation
----------

`Schema.load <marshmallow.Schema.load>` (and its JSON-decoding counterpart, `Schema.loads <marshmallow.Schema.loads>`) raises a :exc:`ValidationError <marshmallow.exceptions.ValidationError>` error when invalid data are passed in. You can access the dictionary of validation errors from the `ValidationError.messages <marshmallow.exceptions.ValidationError.messages>` attribute. The data that were correctly deserialized are accessible in `ValidationError.valid_data <marshmallow.exceptions.ValidationError.valid_data>`. Some fields, such as the :class:`Email <fields.Email>` and :class:`URL <fields.URL>` fields, have built-in validation.

.. code-block:: python

    from marshmallow import ValidationError

    try:
        result = UserSchema().load({"name": "John", "email": "foo"})
    except ValidationError as err:
        print(err.messages)  # => {"email": ['"foo" is not a valid email address.']}
        print(err.valid_data)  # => {"name": "John"}


When validating a collection, the errors dictionary will be keyed on the indices of invalid items.

.. code-block:: python

    from pprint import pprint

    from marshmallow import Schema, fields, ValidationError


    class BandMemberSchema(Schema):
        name = fields.String(required=True)
        email = fields.Email()


    user_data = [
        {"email": "mick@stones.com", "name": "Mick"},
        {"email": "invalid", "name": "Invalid"},  # invalid email
        {"email": "keith@stones.com", "name": "Keith"},
        {"email": "charlie@stones.com"},  # missing "name"
    ]

    try:
        BandMemberSchema(many=True).load(user_data)
    except ValidationError as err:
        pprint(err.messages)
        # {1: {'email': ['Not a valid email address.']},
        #  3: {'name': ['Missing data for required field.']}}

You can perform additional validation for a field by passing the ``validate`` argument.
There are a number of built-in validators in the :ref:`marshmallow.validate <api_validators>` module.

.. code-block:: python

    from pprint import pprint

    from marshmallow import Schema, fields, validate, ValidationError


    class UserSchema(Schema):
        name = fields.Str(validate=validate.Length(min=1))
        permission = fields.Str(validate=validate.OneOf(["read", "write", "admin"]))
        age = fields.Int(validate=validate.Range(min=18, max=40))


    in_data = {"name": "", "permission": "invalid", "age": 71}
    try:
        UserSchema().load(in_data)
    except ValidationError as err:
        pprint(err.messages)
        # {'age': ['Must be greater than or equal to 18 and less than or equal to 40.'],
        #  'name': ['Shorter than minimum length 1.'],
        #  'permission': ['Must be one of: read, write, admin.']}


You may implement your own validators.
A validator is a callable that accepts a single argument, the value to validate.
If validation fails, the callable should raise a :exc:`ValidationError <marshmallow.exceptions.ValidationError>`
with a useful error message or return ``False`` (for a generic error message).

.. code-block:: python

    from marshmallow import Schema, fields, ValidationError


    def validate_quantity(n):
        if n < 0:
            raise ValidationError("Quantity must be greater than 0.")
        if n > 30:
            raise ValidationError("Quantity must not be greater than 30.")


    class ItemSchema(Schema):
        quantity = fields.Integer(validate=validate_quantity)


    in_data = {"quantity": 31}
    try:
        result = ItemSchema().load(in_data)
    except ValidationError as err:
        print(err.messages)  # => {'quantity': ['Quantity must not be greater than 30.']}

You may also pass a collection (list, tuple, generator) of callables to ``validate``.

.. warning::

    Validation occurs on deserialization but not on serialization.
    To improve serialization performance, data passed to `Schema.dump <marshmallow.Schema.dump>`
    are considered valid.

.. seealso::

    You can register a custom error handler function for a schema by overriding the
    :func:`handle_error <Schema.handle_error>` method.
    See the :doc:`extending/custom_error_handling` page for more info.

.. seealso::

    If you need to validate multiple fields within a single validator, see :ref:`schema_validation`.


Field validators as methods
+++++++++++++++++++++++++++

It is sometimes convenient to write validators as methods. Use the `validates <marshmallow.decorators.validates>` decorator to register field validator methods.

.. code-block:: python

    from marshmallow import fields, Schema, validates, ValidationError


    class ItemSchema(Schema):
        quantity = fields.Integer()

        @validates("quantity")
        def validate_quantity(self, value):
            if value < 0:
                raise ValidationError("Quantity must be greater than 0.")
            if value > 30:
                raise ValidationError("Quantity must not be greater than 30.")


Required fields
---------------

Make a field required by passing ``required=True``. An error will be raised if the the value is missing from the input to `Schema.load <marshmallow.Schema.load>`.

To customize the error message for required fields, pass a `dict` with a ``required`` key as the ``error_messages`` argument for the field.

.. code-block:: python

    from pprint import pprint

    from marshmallow import Schema, fields, ValidationError


    class UserSchema(Schema):
        name = fields.String(required=True)
        age = fields.Integer(required=True, error_messages={"required": "Age is required."})
        city = fields.String(
            required=True,
            error_messages={"required": {"message": "City required", "code": 400}},
        )
        email = fields.Email()


    try:
        result = UserSchema().load({"email": "foo@bar.com"})
    except ValidationError as err:
        pprint(err.messages)
        # {'age': ['Age is required.'],
        # 'city': {'code': 400, 'message': 'City required'},
        # 'name': ['Missing data for required field.']}


Partial loading
---------------

When using the same schema in multiple places, you may only want to skip ``required``
validation by passing ``partial``.

.. code-block:: python

    class UserSchema(Schema):
        name = fields.String(required=True)
        age = fields.Integer(required=True)


    result = UserSchema().load({"age": 42}, partial=("name",))
    # OR UserSchema(partial=('name',)).load({'age': 42})
    print(result)  # => {'age': 42}

You can ignore missing fields entirely by setting ``partial=True``.

.. code-block:: python

    class UserSchema(Schema):
        name = fields.String(required=True)
        age = fields.Integer(required=True)


    result = UserSchema().load({"age": 42}, partial=True)
    # OR UserSchema(partial=True).load({'age': 42})
    print(result)  # => {'age': 42}

Specifying defaults
-------------------

`load_default` specifies the default deserialization value for a field.
Likewise, `dump_default` specifies the default serialization value.

.. code-block:: python

    class UserSchema(Schema):
        id = fields.UUID(load_default=uuid.uuid1)
        birthdate = fields.DateTime(dump_default=dt.datetime(2017, 9, 29))


    UserSchema().load({})
    # {'id': UUID('337d946c-32cd-11e8-b475-0022192ed31b')}
    UserSchema().dump({})
    # {'birthdate': '2017-09-29T00:00:00+00:00'}

.. _unknown:

Handling unknown fields
-----------------------

By default, :meth:`load <Schema.load>` will raise a :exc:`ValidationError <marshmallow.exceptions.ValidationError>` if it encounters a key with no matching ``Field`` in the schema.

.. code-block:: python

    from marshmallow import Schema, fields


    class UserSchema(Schema):
        name = fields.Str()
        email = fields.Email()
        created_at = fields.DateTime()


    UserSchema().load(
        {
            "name": "Monty",
            "email": "monty@python.org",
            "created_at": "2014-08-17T14:54:16.049594+00:00",
            "extra": "Not a field",
        }
    )
    # raises marshmallow.exceptions.ValidationError: {'extra': ['Unknown field.']}

This behavior can be modified with the ``unknown`` option, which accepts one of the following:

- `RAISE <marshmallow.RAISE>` (default): raise a :exc:`ValidationError <marshmallow.exceptions.ValidationError>`
  if there are any unknown fields
- `EXCLUDE <marshmallow.EXCLUDE>`: exclude unknown fields
- `INCLUDE <marshmallow.INCLUDE>`: accept and include the unknown fields

You can specify `unknown <marshmallow.Schema.Meta.unknown>` in the `class Meta <marshmallow.Schema.Meta>` of your `Schema <marshmallow.Schema>`,

.. code-block:: python

    from pprint import pprint
    from marshmallow import Schema, fields, INCLUDE


    class UserSchema(Schema):
        name = fields.Str()
        email = fields.Email()
        created_at = fields.DateTime()

        class Meta:
            unknown = INCLUDE


    result = UserSchema().load(
        {
            "name": "Monty",
            "email": "monty@python.org",
            "created_at": "2014-08-17T14:54:16.049594+00:00",
            "extra": "Not a field",
        }
    )
    pprint(result)
    # {'created_at': datetime.datetime(2014, 8, 17, 14, 54, 16, 49594, tzinfo=datetime.timezone(datetime.timedelta(0), '+0000')),
    #  'email': 'monty@python.org',
    #  'extra': 'Not a field',
    #  'name': 'Monty'}

at instantiation time,

.. code-block:: python

    schema = UserSchema(unknown=INCLUDE)

or when calling :meth:`load <marshmallow.Schema.load>`.

.. code-block:: python

    UserSchema().load(data, unknown=INCLUDE)

The `unknown <marshmallow.Schema.Meta.unknown>` option value set in `load <marshmallow.Schema.load>`
will override the value applied at instantiation time,
which itself will override the value defined in the `class Meta <marshmallow.Schema.Meta>`.

This order of precedence allows you to change the behavior of a schema for different contexts.


Validation without deserialization
----------------------------------

If you only need to validate input data (without deserializing to an object), you can use `Schema.validate <marshmallow.Schema.validate>`.

.. code-block:: python

    errors = UserSchema().validate({"name": "Ronnie", "email": "invalid-email"})
    print(errors)  # {'email': ['Not a valid email address.']}


"Read-only" and "write-only" fields
-----------------------------------

In the context of a web API, the ``dump_only`` and ``load_only`` parameters are conceptually equivalent to "read-only" and "write-only" fields, respectively.

.. code-block:: python

    class UserSchema(Schema):
        name = fields.Str()
        # password is "write-only"
        password = fields.Str(load_only=True)
        # created_at is "read-only"
        created_at = fields.DateTime(dump_only=True)

.. warning::

    When loading, dump-only fields are considered unknown. If the ``unknown`` option is set to ``INCLUDE``, values with keys corresponding to those fields are therefore loaded with no validation.

Specifying serialization/deserialization keys
---------------------------------------------

Schemas will (de)serialize an input dictionary from/to an output dictionary whose keys are identical to the field names.
If you are consuming and producing data that does not match your schema, you can specify the output keys via the `data_key` argument.

.. code-block:: python

    class UserSchema(Schema):
        name = fields.String()
        email = fields.Email(data_key="emailAddress")


    s = UserSchema()

    data = {"name": "Mike", "email": "foo@bar.com"}
    result = s.dump(data)
    # {'name': u'Mike',
    # 'emailAddress': 'foo@bar.com'}

    data = {"name": "Mike", "emailAddress": "foo@bar.com"}
    result = s.load(data)
    # {'name': u'Mike',
    # 'email': 'foo@bar.com'}


.. _meta_options:

Implicit field creation
-----------------------

.. warning::

    Implicit field creation is deprecated and is removed in marshmallow 4.
    Fields should be declared explicitly.

    .. code-block:: python

        # 3.x
        class UserSchema(Schema):
            class Meta:
                fields = ("name", "birthdate")


        # 4.x
        class UserSchema(Schema):
            name = fields.String()
            email = fields.Date()

When your model has many attributes, specifying the field type for every attribute can get repetitive, especially when many of the attributes are already native Python datatypes.

The ``fields`` option allows you to specify implicitly-created fields. marshmallow will choose an appropriate field type based on the attribute's type.

Let's refactor our User schema to be more concise.

.. code-block:: python

    class UserSchema(Schema):
        uppername = fields.Function(lambda obj: obj.name.upper())

        class Meta:
            fields = ("name", "email", "created_at", "uppername")

Note that ``name`` will be automatically formatted as a :class:`String <marshmallow.fields.String>` and ``created_at`` will be formatted as a :class:`DateTime <marshmallow.fields.DateTime>`.

.. note::

    If instead you want to specify which field names to include *in addition* to the explicitly declared fields, you can use the ``additional`` option.

    The schema below is equivalent to above:

    .. code-block:: python

        class UserSchema(Schema):
            uppername = fields.Function(lambda obj: obj.name.upper())

            class Meta:
                # No need to include 'uppername'
                additional = ("name", "email", "created_at")

Next steps
----------
- Need to represent relationships between objects? See the :doc:`nesting` page.
- Want to create your own field type? See the :doc:`custom_fields` page.
- Need to add schema-level validation, post-processing, or error handling behavior? See the :doc:`extending/index` page.
- For more detailed usage examples, check out the :doc:`examples/index` page.